Learn R Programming

HDANOVA (version 0.8.1)

msca: Multilevel Simultaneous Component Analysis - MSCA

Description

This MSCA implementation assumes a single factor to be used as between-individuals factor.

Usage

msca(formula, data, ...)

Value

An asca object containing loadings, scores, explained variances, etc. The object has associated plotting (asca_plots) and result (asca_results) functions.

Arguments

formula

Model formula accepting a single response (block) and predictors. See Details for more information.

data

The data set to analyse.

...

Additional arguments to asca_fit.

References

  • Smilde, A., Jansen, J., Hoefsloot, H., Lamers,R., Van Der Greef, J., and Timmerman, M.(2005). ANOVA-Simultaneous Component Analysis (ASCA): A new tool for analyzing designed metabolomics data. Bioinformatics, 21(13), 3043–3048.

  • Liland, K.H., Smilde, A., Marini, F., and Næs,T. (2018). Confidence ellipsoids for ASCA models based on multivariate regression theory. Journal of Chemometrics, 32(e2990), 1–13.

See Also

Main methods: asca, apca, limmpca, msca, pcanova, prc and permanova. Workhorse function underpinning most methods: asca_fit. Extraction of results and plotting: asca_results, asca_plots, pcanova_results and pcanova_plots

Examples

Run this code
# Load candies data
data(candies)

# Basic MSCA model with a single factor
mod <- msca(assessment ~ candy, data=candies)
print(mod)
summary(mod)

# Result plotting for first factor
loadingplot(mod, scatter=TRUE, labels="names")
scoreplot(mod)

# Within scores
scoreplot(mod, factor="within")

# Within scores per factor level
par.old <- par(mfrow=c(3,2), mar=c(4,4,2,1), mgp=c(2,0.7,0))
for(i in 1:length(mod$scores.within))
  scoreplot(mod, factor="within", within_level=i,
            main=paste0("Level: ", names(mod$scores.within)[i]),
            panel.first=abline(v=0,h=0,col="gray",lty=2))
par(par.old)

# Permutation testing
mod.perm <- asca(assessment ~ candy * assessor, data=candies, permute=TRUE)
summary(mod.perm)

Run the code above in your browser using DataLab