# NOT RUN {
# muiltivariate normal distribution:
# generate data with dimension d = 500
set.seed(151)
n1=n2=n3=n4=10
d = 500
I1 <- matrix(rnorm(n1*d,mean=0,sd=1),n1,d)
I2 <- matrix(rnorm(n2*d,mean=0.5,sd=1),n2,d)
I3 <- matrix(rnorm(n3*d,mean=1,sd=1),n3,d)
I4 <- matrix(rnorm(n4*d,mean=1.5,sd=1),n4,d)
X <- as.matrix(rbind(I1,I2,I3,I4))
#AFS test:
results <- AFStest(M=X, sizes = c(n1,n2,n3,n4))
## outputs:
results$AFSStat
#[1] 5.412544e-06
results$AFCutoff
#[1] 0.0109604
results$randomGamma
#[1] 0
results$decisionAFS
#[1] 1
results$multipleTest
# Population.1 Population.2 rejected pvalues
#1 1 2 TRUE 0
#2 1 3 TRUE 0
#3 1 4 TRUE 0
#4 2 3 TRUE 0
#5 2 4 TRUE 0
#6 3 4 TRUE 0
# }
Run the code above in your browser using DataLab