# NOT RUN {
# muiltivariate normal distribution:
# generate data with dimension d = 500
set.seed(151)
n1=n2=n3=n4=10
k = 4
d = 500
I1 <- matrix(rnorm(n1*d,mean=0,sd=1),n1,d)
I2 <- matrix(rnorm(n2*d,mean=0.5,sd=1),n2,d)
I3 <- matrix(rnorm(n3*d,mean=1,sd=1),n3,d)
I4 <- matrix(rnorm(n4*d,mean=1.5,sd=1),n4,d)
levels <- c(rep(0,n1), rep(1,n2), rep(2,n3), rep(3,n4))
X <- as.matrix(rbind(I1,I2,I3,I4))
#FS test:
results <- FStest(M=X, labels=levels, sizes = c(n1,n2,n3,n4), n_clust = k)
## outputs:
results$estClustLabel
#[1] 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3
results$obsCtyTab
# [,1] [,2] [,3] [,4]
#[1,] 10 0 0 0
#[2,] 0 10 0 0
#[3,] 0 0 10 0
#[4,] 0 0 0 10
results$ObservedProb
#[1] 2.125236e-22
results$FCutoff
#[1] 1.115958e-07
results$randomGamma
#[1] 0
results$estPvalue
#[1] 0
results$decisionF
#[1] 1
# }
Run the code above in your browser using DataLab