# NOT RUN {
# Modified K-means algorithm:
# muiltivariate normal distribution
# generate data with dimension d = 500
set.seed(151)
n1=n2=n3=n4=10
d = 500
I1 <- matrix(rnorm(n1*d,mean=0,sd=1),n1,d)
I2 <- matrix(rnorm(n2*d,mean=0.5,sd=1),n2,d)
I3 <- matrix(rnorm(n3*d,mean=1,sd=1),n3,d)
I4 <- matrix(rnorm(n4*d,mean=1.5,sd=1),n4,d)
n_cl <- 4
N <- n1+n2+n3+n4
X <- as.matrix(rbind(I1,I2,I3,I4))
dvec_di_mat <- gMADD_DI(1,1,2*n_cl,1,X)
est_no_cl <- which.max(dvec_di_mat[ ,(N+1)])
dvec_di_mat[est_no_cl,1:N]
## outputs:
#[1] 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3
# }
Run the code above in your browser using DataLab