Input matrix, of dimension \(T\times N\). Each row is an observation with \(N\) features at time point \(t\).
rmax
The user-supplied maximum factor numbers.
Method
Method="P" indicates minimizing the Huber loss of the idiosyncratic error's \(\ell_2\) norm while Method="E" indicates minimizing the elementwise Huber loss. The default is the elementwise Huber loss.
tau
Optional user-supplied parameter for Huber loss; default is NULL, and \(\tau\) is provided by default.
scale_est
A parameter for the elementwise Huber loss. scale_est="MAD" indicates robust variance estimation in each iteration, while scale_est="const" indicates fixing user-supplied \(\tau\). The default is scale_est="MAD".
threshold
The threshold of rank minimization; default is NULL.
L_init
User-supplied inital value of loadings in the HPCA; default is the PCA estimator.
F_init
User-supplied inital value of factors in the HPCA; default is the PCA estimator.
maxiter_HPCA
The maximum number of iterations in the HPCA. The default is \(100\).
maxiter_HLM
The maximum number of iterations in the iterative Huber regression algorithm. The default is \(100\).
eps
The stopping critetion parameter in the HPCA. The default is 1e-3.
Author
Yong He, Lingxiao Li, Dong Liu, Wenxin Zhou.
Details
See He et al. (2023) for details.
References
He Y, Li L, Liu D, Zhou W., 2023 Huber Principal Component Analysis for Large-dimensional Factor Models.