powered by
This function is to estimate factor numbers via rank minimization corresponding to Iterative Quantile Regression (IQR).
IQR_FN(X, rmax, tau, threshold = NULL, L_init = NULL, F_init = NULL, max_iter = 100, eps = 10^(-6))
The estimated factor number.
Input matrix, of dimension \(T\times N\). Each row is an observation with \(N\) features at time point \(t\).
The user-supplied maximum factor numbers.
The user-supplied quantile level.
The threshold of rank minimization; default is NULL.
User-supplied inital value of loadings in the IQR; default is the PCA estimator.
User-supplied inital value of factors in the IQR; default is the PCA estimator.
The maximum number of iterations. The default is \(100\).
The stopping critetion parameter of the IQR method. The default is 1e-06.
Yong He, Lingxiao Li, Dong Liu, Wenxin Zhou.
See Chen et al. (2021) for more details.
Chen, L., Dolado, J.J., Gonzalo, J., 2021. Quantile factor models. Econometrica 89, 875–910.
set.seed(1) T=50;N=50;r=3 L=matrix(rnorm(N*r,0,1),N,r);F=matrix(rnorm(T*r,0,1),T,r) E=matrix(rnorm(T*N,0,1),T,N) X=F%*%t(L)+E tau=0.5 IQR_FN(X,8,tau)
Run the code above in your browser using DataLab