WN_test()
implements the test proposed in Chang, Yao and Zhou
(2017) for the following hypothesis testing problem: $$H_0:\{{\bf y}_t
\}_{t=1}^n\mathrm{\ is\ white\ noise\ \ versus\ \ }H_1:\{{\bf y}_t
\}_{t=1}^n\mathrm{\ is\ not\ white\ noise.} $$
WN_test(
Y,
lag.k = 2,
B = 1000,
kernel.type = c("QS", "Par", "Bart"),
pre = FALSE,
alpha = 0.05,
control.PCA = list()
)
An object of class "hdtstest"
, which contains the following
components:
The test statistic of the test.
The p-value of the test.
The time lag used in function.
The kernel used in function.
An \(n \times p\) data matrix \({\bf Y} = ({\bf y}_1, \dots , {\bf y}_n )'\), where \(n\) is the number of the observations of the \(p \times 1\) time series \(\{{\bf y}_t\}_{t=1}^n\).
The time lag \(K\) used to calculate the test statistic [See (4) of Chang, Yao and Zhou (2017)]. The default is 2.
The number of bootstrap replications for generating multivariate normally distributed random vectors when calculating the critical value. The default is 1000.
The option for choosing the symmetric kernel used
in the estimation of long-run covariance matrix. Available options include:
"QS"
(the default) for the Quadratic spectral kernel, "Par"
for the Parzen kernel, and "Bart"
for the Bartlett kernel.
See Chang, Yao and Zhou (2017) for more information.
Logical. If TRUE
(the default), the time series PCA
proposed in Chang, Guo and Yao (2018) should be performed on
\(\{{\bf y}_t\}_{t=1}^n\) before implementing the white noise test [See Remark 1
of Chang, Yao and Zhou (2017)]. The time series PCA is implemented by using
the function PCA_TS
with the arguments passed by control.PCA
.
The significance level of the test. The default is 0.05.
A list of control arguments passed to the function
PCA_TS()
, including lag.k
, opt
, thresh
,
delta
, and the associated arguments passed to the clime
function
(when opt = 2
). See 'Details’ in PCA_TS
.
Chang, J., Guo, B., & Yao, Q. (2018). Principal component analysis for second-order stationary vector time series. The Annals of Statistics, 46, 2094--2124. tools:::Rd_expr_doi("doi:10.1214/17-AOS1613").
Chang, J., Yao, Q., & Zhou, W. (2017). Testing for high-dimensional white noise using maximum cross-correlations. Biometrika, 104, 111--127. tools:::Rd_expr_doi("doi:10.1093/biomet/asw066").
PCA_TS
#Example 1
## Generate xt
n <- 200
p <- 10
Y <- matrix(rnorm(n * p), n, p)
res <- WN_test(Y)
Pvalue <- res$p.value
rej <- res$reject
Run the code above in your browser using DataLab