Learn R Programming

HDTSA (version 1.0.5)

WN_test: Testing for white noise hypothesis in high dimension

Description

WN_test() implements the test proposed in Chang, Yao and Zhou (2017) for the following hypothesis testing problem: $$H_0:\{{\bf y}_t \}_{t=1}^n\mathrm{\ is\ white\ noise\ \ versus\ \ }H_1:\{{\bf y}_t \}_{t=1}^n\mathrm{\ is\ not\ white\ noise.} $$

Usage

WN_test(
  Y,
  lag.k = 2,
  B = 1000,
  kernel.type = c("QS", "Par", "Bart"),
  pre = FALSE,
  alpha = 0.05,
  control.PCA = list()
)

Value

An object of class "hdtstest", which contains the following components:

statistic

The test statistic of the test.

p.value

The p-value of the test.

lag.k

The time lag used in function.

kernel.type

The kernel used in function.

Arguments

Y

An \(n \times p\) data matrix \({\bf Y} = ({\bf y}_1, \dots , {\bf y}_n )'\), where \(n\) is the number of the observations of the \(p \times 1\) time series \(\{{\bf y}_t\}_{t=1}^n\).

lag.k

The time lag \(K\) used to calculate the test statistic [See (4) of Chang, Yao and Zhou (2017)]. The default is 2.

B

The number of bootstrap replications for generating multivariate normally distributed random vectors when calculating the critical value. The default is 1000.

kernel.type

The option for choosing the symmetric kernel used in the estimation of long-run covariance matrix. Available options include: "QS" (the default) for the Quadratic spectral kernel, "Par" for the Parzen kernel, and "Bart" for the Bartlett kernel. See Chang, Yao and Zhou (2017) for more information.

pre

Logical. If TRUE (the default), the time series PCA proposed in Chang, Guo and Yao (2018) should be performed on \(\{{\bf y}_t\}_{t=1}^n\) before implementing the white noise test [See Remark 1 of Chang, Yao and Zhou (2017)]. The time series PCA is implemented by using the function PCA_TS with the arguments passed by control.PCA.

alpha

The significance level of the test. The default is 0.05.

control.PCA

A list of control arguments passed to the function PCA_TS(), including lag.k, opt, thresh, delta, and the associated arguments passed to the clime function (when opt = 2). See 'Details’ in PCA_TS.

References

Chang, J., Guo, B., & Yao, Q. (2018). Principal component analysis for second-order stationary vector time series. The Annals of Statistics, 46, 2094--2124. tools:::Rd_expr_doi("doi:10.1214/17-AOS1613").

Chang, J., Yao, Q., & Zhou, W. (2017). Testing for high-dimensional white noise using maximum cross-correlations. Biometrika, 104, 111--127. tools:::Rd_expr_doi("doi:10.1093/biomet/asw066").

See Also

PCA_TS

Examples

Run this code
#Example 1
## Generate xt
n <- 200
p <- 10
Y <- matrix(rnorm(n * p), n, p)

res <- WN_test(Y)
Pvalue <- res$p.value
rej <- res$reject

Run the code above in your browser using DataLab