
Last chance! 50% off unlimited learning
Sale ends in
tsdiagplot(x,
p.max=2, q.max=p.max,
model=c(p.max, 0, q.max), ## S-Plus
order=c(p.max, 0, q.max), ## R
lag.max=36, gof.lag=lag.max,
armas=if.R(
s=arma.loop(x, model=model,
series=deparse(substitute(x)), ...),
r=arma.loop(x, order=order,
series=deparse(substitute(x)), ...)),
diags=diag.arma.loop(armas, x,
lag.max=lag.max,
gof.lag=gof.lag),
ts.diag=rearrange.diag.arma.loop(diags),
lag.units=ts.diag$tspar["frequency"],
lag.lim=range(pretty(ts.diag$acf$lag))*lag.units,
lag.x.at=pretty(ts.diag$acf$lag)*lag.units,
lag.x.labels={tmp <- lag.x.at
tmp[as.integer(tmp)!=tmp] <- ""
tmp},
lag.0=TRUE,
main, lwd=0,
...)
acfplot(rdal, type="acf",
main=paste("ACF of std.resid:", rdal$series,
" model:", rdal$model),
lag.units=rdal$tspar["frequency"],
lag.lim=range(pretty(rdal[[type]]$lag)*lag.units),
lag.x.at=pretty(rdal[[type]]$lag)*lag.units,
lag.x.labels={tmp <- lag.x.at
tmp[as.integer(tmp)!=tmp] <- ""
tmp},
lag.0=TRUE,
xlim=xlim.function(lag.lim/lag.units),
...)
aicsigplot(z, z.name=deparse(substitute(z)), series.name="ts",
model=NULL,
xlab="", ylab=z.name,
main=paste(z.name, series.name, model),
layout=c(1,2), between=list(x=1,y=1), ...)
residplot(rdal,
main=paste("std.resid:", rdal$series,
" model:", rdal$model),
...)
gofplot(rdal,
main=paste("P-value for gof:", rdal$series,
" model:", rdal$model),
lag.units=rdal$tspar["frequency"],
lag.lim=range(pretty(rdal$gof$lag)*lag.units),
lag.x.at=pretty(rdal$gof$lag)*lag.units,
lag.x.labels={tmp <- lag.x.at
tmp[as.integer(tmp)!=tmp] <- ""
tmp},
xlim=xlim.function(lag.lim/lag.units),
pch=16, ...)
model
for
arima.mle
.order
for
arima
. The additional argument seasonal
may also be used.arma.loop
object.diag.arma.loop
object.diag.arma.loop
object.frequency(x)
xlim
in acf and pacf plots.TRUE
, then plot the correlation (identically 1)
at lag=0.
If FALSE
, do not plot the correlation at lag=0."acf"
or "pacf"
aic
or sigma2
component of the
sumamry of a arma.loop
object."aic"
or "sigma2"
tsdiagplot
sends them to
arima
or arima.mle
. acfplot
,
aicsigplot
residplot
, and gofplot
send them to xyplot
.tsdiagplot
returns a "tsdiagplot"
object which is
a list of "trellis"
objects. It is printed with its own
print method.
The other functions return "trellis"
objects.tsacfplots
, arma.loop
X <- as.rts(scan(hh("datasets/tser.mystery.X.dat")))
X.dataplot <- tsacfplots(X, lwd=1, pch.seq=16, cex=.7)
X.dataplot
X.loop <- if.R(
s=
arma.loop(X, model=list(order=c(2,0,2)))
,r=
arma.loop(X, order=c(2,0,2))
)
X.dal <- diag.arma.loop(X.loop, x=X)
X.diag <- rearrange.diag.arma.loop(X.dal)
X.diagplot <- tsdiagplot(armas=X.loop, ts.diag=X.diag, lwd=1)
X.diagplot
X.loop
X.loop[["1","1"]]
Run the code above in your browser using DataLab