Learn R Programming

HIBAG (version 1.8.3)

plot.hlaAttrBagObj: Plot a HIBAG model

Description

To show a scatterplot of the numbers of individual classifiers and SNP positions.

Usage

"plot"(x, xlab=NULL, ylab=NULL, locus.color="red", locus.lty=2, locus.cex=1.25, assembly="auto", ...) "plot"(x, ...)

Arguments

x
an object of hlaAttrBagObj
xlab
the label of X-axis
ylab
the label of Y-axis
locus.color
the color of text and line for HLA locus
locus.lty
the type of line for HLA locus
locus.cex
the font size of HLA locus
assembly
the human genome reference: "hg18", "hg19" (default), "hg20"; "auto" refers to "hg19"; "auto-silent" refers to "hg19" without any warning
...
further arguments passed to or from other methods

Value

See Also

print.hlaAttrBagObj, summary.hlaAttrBagObj

Examples

Run this code
# make a "hlaAlleleClass" object
hla.id <- "C"
hla <- hlaAllele(HLA_Type_Table$sample.id,
    H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
    H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
    locus=hla.id, assembly="hg19")

# training genotypes
region <- 100   # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,
    hla.id, region*1000, assembly="hg19")
train.geno <- hlaGenoSubset(HapMap_CEU_Geno,
    snp.sel = match(snpid, HapMap_CEU_Geno$snp.id))

# train a HIBAG model
set.seed(1000)
# please use "nclassifier=100" when you use HIBAG for real data
model <- hlaAttrBagging(hla, train.geno, nclassifier=2, verbose.detail=TRUE)
plot(model)

Run the code above in your browser using DataLab