- X
a vector of exposure. Do not use data.frame or matrix.
- Y
a vector of outcome. Can be either continuous or binary (0-1). Do not use data.frame or matrix.
- M
a data.frame or matrix of high-dimensional mediators. Rows represent samples, columns
represent variables.
- COV.XM
a data.frame or matrix of covariates dataset for testing the association M ~ X.
Covariates specified here will not participate penalization. Default = NULL. If the covariates
contain mixed data types, please make sure all categorical variables are properly formatted as factor type.
- COV.MY
a data.frame or matrix of covariates dataset for testing the association Y ~ M.
Covariates specified here will not participate penalization. If not specified, the same set of covariates for
M ~ X will be applied. Using different sets of covariates is allowed but this needs to be handled carefully.
- Y.family
either 'gaussian' (default) or 'binomial', depending on the data type of outcome (Y). See
ncvreg
- M.family
either 'gaussian' (default) or 'negbin' (i.e., negative binomial), depending on the data type of
mediator (M).
- penalty
the penalty to be applied to the model. Either 'MCP' (the default), 'SCAD', or
'lasso'. See ncvreg.
- topN
an integer specifying the number of top markers from sure independent screening.
Default = NULL. If NULL, topN will be either ceiling(n/log(n)) if
Y.family = 'gaussian', or ceiling(n/(2*log(n))) if Y.family = 'binomial',
where n is the sample size. If the sample size is greater than topN (pre-specified or calculated), all
mediators will be included in the test (i.e. low-dimensional scenario).
- parallel
logical. Enable parallel computing feature? Default = FALSE.
- ncore
number of cores to run parallel computing Valid when parallel == TRUE.
By default max number of cores available in the machine will be utilized.
- scale
logical. Should the function scale the data? Default = TRUE.
- verbose
logical. Should the function be verbose? Default = FALSE.
- ...
other arguments passed to ncvreg.