if (FALSE) {
# Example 1 (continous outcome):
data(Example1)
head(Example1$PhenoData)
e1 <- hima2(Outcome ~ Treatment + Sex + Age,
data.pheno = Example1$PhenoData,
data.M = Example1$Mediator,
outcome.family = "gaussian",
mediator.family = "gaussian",
penalty = "MCP",
scale = FALSE)
e1
attributes(e1)$variable.labels
# Example 2 (binary outcome):
data(Example2)
head(Example2$PhenoData)
e2 <- hima2(Disease ~ Treatment + Sex + Age,
data.pheno = Example2$PhenoData,
data.M = Example2$Mediator,
outcome.family = "binomial",
mediator.family = "gaussian",
penalty = "MCP",
scale = FALSE)
e2
attributes(e2)$variable.labels
# Example 3 (time-to-event outcome):
data(Example3)
head(Example3$PhenoData)
e3 <- hima2(Surv(Status, Time) ~ Treatment + Sex + Age,
data.pheno = Example3$PhenoData,
data.M = Example3$Mediator,
outcome.family = "survival",
mediator.family = "gaussian",
penalty = "DBlasso",
scale = FALSE)
e3
attributes(e3)$variable.labels
# Example 4 (compositional data as mediator, e.g., microbiome):
data(Example4)
head(Example4$PhenoData)
e4 <- hima2(Outcome ~ Treatment + Sex + Age,
data.pheno = Example4$PhenoData,
data.M = Example4$Mediator,
outcome.family = "gaussian",
mediator.family = "compositional",
penalty = "DBlasso",
scale = FALSE)
e4
attributes(e4)$variable.labels
}
Run the code above in your browser using DataLab