
Last chance! 50% off unlimited learning
Sale ends in
hima_quantile
is used to estimate and test high-dimensional quantile mediation effects.
hima_quantile(
X,
M,
Y,
COV = NULL,
penalty = c("MCP", "SCAD", "lasso"),
topN = NULL,
tau = 0.5,
scale = TRUE,
Bonfcut = 0.05,
verbose = FALSE,
...
)
A data.frame containing mediation testing results of selected mediators (Bonferroni-adjusted p value <Bonfcut
).
mediation name of selected significant mediator.
coefficient estimates of exposure (X) --> mediators (M) (adjusted for covariates).
standard error for alpha.
coefficient estimates of mediators (M) --> outcome (Y) (adjusted for covariates and exposure).
standard error for beta.
mediation (indirect) effect, i.e., alpha*beta.
relative importance of the mediator.
joint raw p-value of selected significant mediator (based on Bonferroni method).
a vector of exposure. Do not use data.frame
or matrix
.
a data.frame
or matrix
of high-dimensional mediators. Rows represent samples, columns
represent mediator variables.
a vector of continuous outcome. Do not use data.frame
or matrix
.
a matrix of adjusting covariates. Rows represent samples, columns represent variables. Can be NULL
.
the penalty to be applied to the model (a parameter passed to function conquer.cv.reg
in package conquer
.
Either 'MCP'
(the default), 'SCAD'
, or 'lasso'
.
an integer specifying the number of top markers from sure independent screening.
Default = NULL
. If NULL
, topN
will be 2*ceiling(n/log(n))
, where n
is the sample size.
If the sample size is greater than topN (pre-specified or calculated), all mediators will be included in the test (i.e.
low-dimensional scenario).
quantile level of outcome. Default = 0.5
. A vector of tau is accepted.
logical. Should the function scale the data? Default = TRUE
.
Bonferroni-corrected p value cutoff applied to select significant mediators. Default = 0.05
.
logical. Should the function be verbose? Default = FALSE
.
reserved passing parameter.
Zhang H, Hong X, Zheng Y, Hou L, Zheng C, Wang X, Liu L. High-Dimensional Quantile Mediation Analysis with Application to a Birth Cohort Study of Mother–Newborn Pairs. Bioinformatics. 2024. DOI: 10.1093/bioinformatics/btae055. PMID: 38290773; PMCID: PMC10873903
if (FALSE) {
# Note: In the following example, M1, M2, and M3 are true mediators.
head(QuantileData$PhenoData)
hima_quantile.fit <- hima_quantile(
X = QuantileData$PhenoData$Treatment,
M = QuantileData$Mediator,
Y = QuantileData$PhenoData$Outcome,
COV = QuantileData$PhenoData[, c("Sex", "Age")],
tau = c(0.3, 0.5, 0.7),
scale = FALSE, # Disabled only for simulation data
Bonfcut = 0.05,
verbose = TRUE
)
hima_quantile.fit
}
Run the code above in your browser using DataLab