- X
A numeric vector of exposure values (do not use data.frame or matrix).
- M
A data.frame or matrix of high-dimensional mediators (rows = observations/intervals, columns = mediators).
- tstart
A numeric vector of starting times for each observation/interval (e.g., entry time in a counting-process setup).
- tstop
A numeric vector of stopping times for each observation/interval (e.g., event/censoring time in a counting-process setup).
- status
A numeric vector of censoring indicators (1 = event, 0 = censored).
- id
A vector of subject identifiers (used for clustering/random effects).
- COV
A matrix or data.frame of adjusting covariates. Rows represent samples, columns represent variables. Can be NULL.
- topN
Integer specifying the number of top mediators retained after sure independent screening (SIS). If NULL
(default), topN = ceiling(n/log(n)), where n is the number of unique subjects. When topN exceeds the
total number of mediators, all mediators are kept (i.e., the low-dimensional scenario).
- scale
Logical. Should the function scale the exposure, mediators, and covariates? Default = TRUE.
- Bonfcut
Bonferroni-corrected p value cutoff applied to select significant mediators. Default = 0.05.
- verbose
Logical. Should progress messages be printed? Default = FALSE.
- parallel
Logical. Enable parallel computing for SIS? Default = FALSE.
- ncore
Integer specifying the number of cores to use when parallel = TRUE.