To assess whether the over dispersion parameter vectors \(\theta_{\mathrm{m}}\) observed in \(J\) groups of microbiome samples are equal to each other, the following hypothesis
\(\mathrm{H}_{\mathrm{o}}: \theta_{\mathrm{1}} = \cdots =\theta_{\mathrm{m}} =\cdots=\theta_{\mathrm{J}}=\theta_{\mathrm{o}}\) versus \(\mathrm{H}_{\mathrm{a}}: \theta_{\mathrm{m}} \ne \theta_{\mathrm{o}}, m=1, \ldots, J\)
can be tested. In particular, the likelihood-ratio test statistic is used (Tvedebrink, 2010), which is given by,
$$x_{\mathrm{oc}}=-2 \log\left\{\frac{L\left(\theta_{\mathrm{o}}; \mathbf{X}_{\mathrm{1}},\ldots, \mathbf{X}_{\mathrm{J}} \right)}{L\left(\theta_{\mathrm{1}},\ldots, \theta_{\mathrm{J}}; \mathbf{X}_{\mathrm{1}},\ldots, \mathbf{X}_{\mathrm{J}} \right)}\right\} .$$
The asymptotic null distribution of \(x_{\mathrm{oc}}\) follows a Chi-square with degrees of freedom equal to (J-1) (Wilks, 1938).
Note 1: The matrices in group.data
must contain the same taxa, in the same order.
Note 2: Each taxa should be present in at least 1 sample, a column with all 0's may result in errors and/or invalid results.