# \donttest{
#Single instance of the bootstrap version of the bootstrap version
#of the indexed HQM estimator
b.alb = 0.9
b.bil = 4
t.alb = 1 # refers to zero mean variables - slightly high
t.bil = 1.9 # refers to zero mean variable - high
par.alb <- 0.0702 #0.149
par.bil <- 0.0856 #0.10
b = 0.42 # The result, on the indexed marker 'indmar' of
#\code{b_selection(pbc2, 'indmar', 'years', 'year', 'status2', I=26, seq(0.2,0.4,by=0.01))}
t = t.alb * par.alb + t.bil *par.bil
marker_name1 <- 'albumin'
marker_name2 <- 'serBilir'
event_time_name <- 'years'
time_name <- 'year'
event_name <- 'status2'
id<-'id'
ls<-50
data.use<-pbc2
data.use.id<-to_id(data.use)
data.use.id<-data.use.id[complete.cases(data.use.id), ]
# mean adjust the data:
X1t=data.use[,marker_name1] -mean(data.use[, marker_name1])
XX1t=data.use.id[,marker_name1] -mean(data.use.id[, marker_name1])
X2t=data.use[,marker_name2] -mean(data.use[, marker_name2])
XX2t=data.use.id[,marker_name2] -mean(data.use.id[, marker_name2])
X1=list(X1t, X2t)
XX1=list(XX1t, XX2t)
boot.haz<-Boot.hqm (c(par.alb,par.bil), data.use, data.use.id, ls=ls, X1, XX1,
event_time_name = 'years', time_name = 'year', event_name = 'status2', b, t)
# }
Run the code above in your browser using DataLab