Learn R Programming

HTSFilter (version 1.12.0)

HTSFilter-package: Filter replicated high-throughput transcriptome sequencing data

Description

This package implements a filtering procedure for replicated transcriptome sequencing data based on a global Jaccard similarity index in order to identify genes with low, constant levels of expression across one or more experimental conditions.

Arguments

Details

Package:
HTSFilter
Type:
Package
Version:
1.7.1
Date:
2015-03-04
License:
Artistic-2.0

References

R. Bourgon, R. Gentleman, and W. Huber. (2010) Independent filtering increases detection power for high- throughput experiments. PNAS 107(21):9546-9551.

P. Jaccard (1901). Etude comparative de la distribution orale dans une portion des Alpes et des Jura. Bulletin de la Societe Vaudoise des Sciences Naturelles, 37:547-549.

A. Rau, M. Gallopin, G. Celeux, F. Jaffrezic (2013). Data-based filtering for replicated high-throughput transcriptome sequencing experiments. Bioinformatics, doi: 10.1093/bioinformatics/btt350.

Examples

Run this code

data("sultan")
conds <- pData(sultan)$cell.line

########################################################################
## Matrix or data.frame
########################################################################

filter <- HTSFilter(exprs(sultan), conds, s.len=25, plot=FALSE)


########################################################################
## CountDataSet
########################################################################

library(DESeq)
cds <- newCountDataSet(exprs(sultan), conds)
cds <- estimateSizeFactors(cds)
cds <- estimateDispersions(cds)
cds <- HTSFilter(cds, s.len=25, plot=FALSE)$filteredData
class(cds)
## res <- nbinomTest(cds, levels(conds)[1], levels(conds)[2])


########################################################################
## DGEExact
########################################################################

library(edgeR)
dge <- DGEList(counts=exprs(sultan), group=conds)
dge <- calcNormFactors(dge)
dge <- estimateCommonDisp(dge)
dge <- estimateTagwiseDisp(dge)
et <- exactTest(dge)
et <- HTSFilter(et, DGEList=dge, s.len=25, plot=FALSE)$filteredData
## topTags(et)





########################################################################

## DESeq2

########################################################################


library(DESeq2)

dds <- DESeqDataSetFromMatrix(countData = exprs(sultan),

                              colData = data.frame(cell.line = conds),

                              design = ~ cell.line)
## Not run:
##
## dds <- DESeq(dds)

## filter <- HTSFilter(dds, s.len=25, plot=FALSE)$filteredData

## class(filter)

## res <- results(filter, independentFiltering=FALSE)



Run the code above in your browser using DataLab