# Load some example data
data(qPCRraw)
# Get a summary of the standard deviation across replicated features
plotCtVariation(qPCRraw, variation="sd", log=TRUE)
# Summary of the first 40 genes, assuming there are 3 groups of samples
plotCtVariation(qPCRraw[1:40,], sample.reps=rep(1:2,3))
# Detailed summary of variation versus mean Ct value for replicated features within each sample
plotCtVariation(qPCRraw, type="detail", log=TRUE)
plotCtVariation(qPCRraw, type="detail")
# Add feature names to see which the highly varying replicates are.
plotCtVariation(qPCRraw, type="detail", add.featurenames=TRUE, pch=" ", cex=0.8)
# Use different information to indicate which features are replicates
plotCtVariation(qPCRraw, type="detail", feature.reps=paste("test", rep(1:96, each=4)))
# Examine variation across samples for the first 9 features
plotCtVariation(qPCRraw[1:9,], type="detail", sample.reps=paste("mutant", rep(1:3,2)), add.featurenames=TRUE)
# Examine the output
test <- plotCtVariation(qPCRraw, variation="sd")
names(test)
head(test[["Var"]])
Run the code above in your browser using DataLab