dataset <- data.frame(t = as.numeric(time(EuStockMarkets)),
DAX = EuStockMarkets[, "DAX"],
SMI = EuStockMarkets[, "SMI"],
CAC = EuStockMarkets[, "CAC"],
FTSE = EuStockMarkets[, "FTSE"])
hvt.results<- trainHVT(dataset[,-1],n_cells = 60, depth = 1, quant.err = 0.1,
distance_metric = "L1_Norm", error_metric = "max",
normalize = TRUE,quant_method = "kmeans")
scoring <- scoreHVT(dataset, hvt.results)
cell_id <- scoring$scoredPredictedData$Cell.ID
time_stamp <- dataset$t
temporal_data <- data.frame(cell_id, time_stamp)
table <- getTransitionProbability(temporal_data,
cellid_column = "cell_id",time_column = "time_stamp")
colnames(temporal_data) <- c("Cell.ID","t")
ex_post_forecasting <- dataset[1800:1860,]
ex_post <- msm(state_time_data = temporal_data,
forecast_type = "ex-post",
transition_probability_matrix = table,
initial_state = 2,
num_simulations = 100,
scoreHVT_results = scoring,
trainHVT_results = hvt.results,
actual_data = ex_post_forecasting,
raw_dataset = dataset,
mae_metric = "median",
show_simulation = FALSE,
time_column = 't')
Run the code above in your browser using DataLab