data("EuStockMarkets")
dataset <- data.frame(date = as.numeric(time(EuStockMarkets)),
DAX = EuStockMarkets[, "DAX"],
SMI = EuStockMarkets[, "SMI"],
CAC = EuStockMarkets[, "CAC"],
FTSE = EuStockMarkets[, "FTSE"])
rownames(EuStockMarkets) <- dataset$date
train <- EuStockMarkets[1:1302, ]
test <- EuStockMarkets[1303:1860, ]
###MAP-A
hvt_mapA <- trainHVT(train, n_cells = 150, depth = 1, quant.err = 0.1,
distance_metric = "L1_Norm", error_metric = "max",
normalize = TRUE,quant_method = "kmeans")
identified_Novelty_cells <- c(127,55,83,61,44,35,27,77)
output_list <- removeNovelty(identified_Novelty_cells, hvt_mapA)
data_with_novelty <- output_list[[1]]
data_with_novelty <- data_with_novelty[, -c(1,2)]
### MAP-B
hvt_mapB <- trainHVT(data_with_novelty,n_cells = 10, depth = 1, quant.err = 0.1,
distance_metric = "L1_Norm", error_metric = "max",
normalize = TRUE,quant_method = "kmeans")
data_without_novelty <- output_list[[2]]
### MAP-C
hvt_mapC <- trainHVT(data_without_novelty,n_cells = 135,
depth = 1, quant.err = 0.1, distance_metric = "L1_Norm",
error_metric = "max", quant_method = "kmeans",
normalize = TRUE)
##SCORE LAYERED
data_scored <- scoreLayeredHVT(test, hvt_mapA, hvt_mapB, hvt_mapC)
Run the code above in your browser using DataLab