if (FALSE) {
# After running msm() for ex-ante forecasting
# Note: trainHVT_results and scoreHVT_results are needed for msm(),
# but NOT for plotExAnteRawSeries() which uses the forecast values directly
ex_ante <- msm(state_time_data = temporal_data,
forecast_type = "ex-ante",
transition_probability_matrix = prob_trans_matx,
initial_state = tail(temporal_data$Cell.ID, 1),
n_ahead_ante = ex_ante_period,
num_simulations = 500,
scoreHVT_results = scoring,
trainHVT_results = hvt.results,
raw_dataset = entire_dataset,
time_column = "t")
# Revert to raw scale - only needs ex_ante_results and original_dataset
raw_forecasts <- plotExAnteRawSeries(
ex_ante_results = ex_ante,
original_dataset = entire_dataset_original, # Pre-transformation raw data
transformed_dataset = entire_dataset, # Post-transformation data
time_column = "t",
mae_metric = "median"
)
# Access reverted forecasts
raw_forecasts$reverted_forecasts$CPI_Food
# Access plots
raw_forecasts$plots$CPI_Food
}
Run the code above in your browser using DataLab