fillUpper(gmat)alleleCounts(gmat)
vec.to.matrix(gvec, alleleNames = "")
remove.missing.alleles(gmat)
matrix.to.vec(gmat)
clearUpper(gmat)
df.to.matrices(df, sep = "/")
a[i,j]
and a[j,i]
both represent the same heterozygote. Only the lower-left half of gmat
is used. Numbers along the diagk(k+1)/2
genotype counts. All non-negative integers. Genotype counts should be in the order: a11, a21, a22, a31, a32, ..., akk
k
be the number of alleles:
clearUpper
fills the upper-right half of the$k x k$matrix withNA
fillUpper
makes the$k x k$matrix symmetrical by filling the upper-right half with numbers from the lower half.vec.to.matrix
converts genotype counts in vector form and returns a matrix. The vector must have$k(k+1)/2$non-negative integers.matrix.to.vec
converts a$k x k$matrix of genotype counts to a vector of length$k(k+1)/2$alleleCounts
returns a vector of length$k$containing the numbers of each allele. The sum of this vector will be twice the number of diploids in the sample.remove.missing.alleles
returns a matrix with no0
's for allele countsdf.to.matrices
converts a data frame to a list of genotype count matrices. The data frame should be of the kind produced in the packageadegenet
withgenind2df
gvec <- c(0,3,1,5,18,1,3,7,5,2)
gmat <- vec.to.matrix(gvec, alleleNames=letters[1:4])
alleleCounts(gmat)
Run the code above in your browser using DataLab