fillUpper(gmat)alleleCounts(gmat)
vec.to.matrix(gvec, alleleNames = "")
remove.missing.alleles(gmat)
matrix.to.vec(gmat)
clearUpper(gmat)
df.to.matrices(df, sep = "/")
a[i,j] and a[j,i] both represent the same heterozygote. Only the lower-left half of gmat is used. Numbers along the diagk(k+1)/2 genotype counts. All non-negative integers. Genotype counts should be in the order: a11, a21, a22, a31, a32, ..., akkk be the number of alleles:
clearUpperfills the upper-right half of the$k x k$matrix withNAfillUppermakes the$k x k$matrix symmetrical by filling the upper-right half with numbers from the lower half.vec.to.matrixconverts genotype counts in vector form and returns a matrix. The vector must have$k(k+1)/2$non-negative integers.matrix.to.vecconverts a$k x k$matrix of genotype counts to a vector of length$k(k+1)/2$alleleCountsreturns a vector of length$k$containing the numbers of each allele. The sum of this vector will be twice the number of diploids in the sample.remove.missing.allelesreturns a matrix with no0's for allele countsdf.to.matricesconverts a data frame to a list of genotype count matrices. The data frame should be of the kind produced in the packageadegenetwithgenind2dfgvec <- c(0,3,1,5,18,1,3,7,5,2)
gmat <- vec.to.matrix(gvec, alleleNames=letters[1:4])
alleleCounts(gmat)Run the code above in your browser using DataLab