hankel.test(x,y,standardized=FALSE,replicates=500,
calcCritVal=FALSE,calcPVal=TRUE,sigLevel=0.95,
probMeasure="exp",params=list(lambda=1.0))standardized=FALSE.list(lambda=1.0).sigLevel=0.95.calcCritVal=FALSE.calcPVal=TRUE.replicates=500."hankeltest" is returned. The following components are retrievable:In case that $\nu$ equals the exponential distribution with parameter $\lambda >0$, an alternative expression for $T_{m,n}$, which is obtained by applying formula 6.615 of Gradstein and Ryshik (1981), is used: $$T_{m,n}(\lambda)=\frac{mn}{m+n} \int_{0}^{\infty} \left (\frac{1}{m} \sum_{i=1}^m J_0(2\sqrt{tX_i})-\frac{1}{n} \sum_{j=1}^n J_0(2\sqrt{tY_j})\right )^2 \lambda \exp(-\lambda t)\,dt$$ $$= \frac{mn}{m+n} \bigg [\frac{1}{m^2} \sum_{i=1}^m \sum_{j=1}^m I_0(2\sqrt{X_iX_j}/\lambda)\hspace{0.5mm} \exp(-(X_i+X_j)/\lambda)$$ $$+ \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n I_0(2\sqrt{Y_iY_j}/\lambda)\hspace{0.5mm} \exp(-(Y_i+Y_j)/\lambda)$$ $$- \frac{2}{mn} \sum_{i=1}^m \sum_{j=1}^n I_0(2\sqrt{X_iY_j}/\lambda)\hspace{0.5mm} \exp(-(X_i+Y_j)/\lambda)\bigg ],$$ where $I_0$ denotes the Bessel function of the third kind of order 0. This representation is used for the computation of the test statistic.
The empirically standardized version of the test is obtained by replacing the $X_1,\dots,X_m$ and $Y_1,\dots,Y_m$ by the empirically standardized variables $U_1=X_1/\eta_{m,n},\ldots,U_m=X_m/\eta_{m,n}$ and $V_1=Y_1/\eta_{m,n},\ldots,V_n=Y_n/\eta_{m,n}$, where $\eta_{m,n}=\frac{1}{m+n}\left ( \sum_{i=1}^{m}X_i+ \sum_{j=1}^{n}Y_j\right)$, in the representation of $T_{m,n}(\lambda)$. For further details see Baringhaus and Kolbe (2014).
Baringhaus, L. and Taherizadeh, F. (2010).Empirical Hankel transforms and its applications to goodness-of-fit tests. J. Multivariate Anal., 101:1445-14457.
Gradstein, I. and Ryshik, I. (1981). Tables. Harri Deutsch, Frankfurt.
# comparison of an uniform distribution with an weibull distribution
x<-runif(30)
y<-rweibull(50,5,0.75)
hankel.test(x,y)
# comparison of an uniform distribution with an weibull distribution
# in standardized case with parameter lambda=0.1 and replicates=1000
x<-runif(30)
y<-rweibull(50,5,0.75)
hankel.test(x,y,standardized=TRUE,params=list(lambda=0.1),replicates=1000)Run the code above in your browser using DataLab