Fingerprints

0th

Percentile

Waite's data on Patterns in Fingerprints

Waite (1915) was interested in analyzing the association of patterns in fingerprints, and produced a table of counts for 2000 right hands, classified by the number of fingers describable as a "whorl", a "small loop" (or neither). Because each hand contributes five fingers, the number of Whorls + Loops cannot exceed 5, so the contingency table is necessarily triangular.

Karl Pearson (1904) introduced the test for independence in contingency tables, and by 1913 had developed methods for "restricted contingency tables," such as the triangular table analyzed by Waite. The general formulation of such tests for association in restricted tables is now referred to as models for quasi-independence.

Keywords
datasets
Usage
data(Fingerprints)
Details

Cells for which Whorls + Loops>5 have NA for count

Format

A frequency data frame with 36 observations on the following 3 variables, representing a 6 x 6 table giving the cross-classification of the fingers on 2000 right hands as a whorl, small loop or neither.

Whorls

Number of whorls, an ordered factor with levels 0 < 1 < 2 < 3 < 4 < 5

Loops

Number of small loops, an ordered factor with levels 0 < 1 < 2 < 3 < 4 < 5

count

Number of hands

References

Pearson, K. (1904). Mathematical contributions to the theory of evolution. XIII. On the theory of contingency and its relation to association and normal correlation. Reprinted in Karl Pearson's Early Statistical Papers, Cambridge: Cambridge University Press, 1948, 443-475.

Waite, H. (1915). The analysis of fingerprints, Biometrika, 10, 421-478.

Aliases
  • Fingerprints
Examples
# NOT RUN {
data(Fingerprints)
xtabs(count ~ Whorls + Loops, data=Fingerprints)
# }
Documentation reproduced from package HistData, version 0.8-6, License: GPL

Community examples

Looks like there are no examples yet.