Learn R Programming

HomomorphicEncryption

Installation

HomomorphicEncryption can be installed from CRAN using:

install.packages('HomomorphicEncryption')

Development version

You can install the development version of HomomorphicEncryption from GitHub with:

if (!require('remotes')) install.packages('remotes')
remotes::install_github('bquast/HomomorphicEncryption', build_vignettes=TRUE)

Usage

Following installation, the package can be loaded using:

library(HomomorphicEncryption)

For general information on using the package, please refer to the help files.

help(package='HomomorphicEncryption')

The procedures for the various Homomorphic Encrypted schema a described in the vignettes (BFV is the starting point):

vignette(package='HomomorphicEncryption')

Additional Information

An overview of the changes is available in the NEWS.md file.

news(package='HomomorphicEncryption')

Development

Development takes place on the GitHub page.

https://github.com/bquast/HomomorphicEncryption/

Bugs can be filed on the issues page on GitHub.

https://github.com/bquast/HomomorphicEncryption/issues

Copy Link

Version

Install

install.packages('HomomorphicEncryption')

Monthly Downloads

229

Version

0.9.0

License

GPL (>= 3)

Maintainer

Bastiaan Quast

Last Published

January 9th, 2024

Functions in HomomorphicEncryption (0.9.0)

round_coordinates

round coordinates
GenU

Generate u
compute_basis_coordinates

compute basis coordinates
sigma_R_discretization

sigma discretization
encode

encode
pi_function

pi function
sigma_function

sigma function
vandermonde

vandermonde
sigma_inverse

sigma inverse
GenEvalKey0

Generate the Evaluation Key
GenPubKey

Generate the Public Key
EncryptPoly0

Encrypt Polynomial Message Part 0
GenA

Generate a
GenPubKey0

Generate part 0 of the Public Key
BFV_KeyGen

Brakerski / Fan-Vercauteren
EncryptPoly1

Encrypt Polynomial Message Part 1
GenError

Generate a
BFV_encrypt

BFV encryption
GenPubKey1

Generate part 1 of the Public Key
coordinate_wise_random_rounding

coordinate-wise random rounding
GenPolyMod

Generate Polynomial Modulo
decode

decode
GenSecretkey

Generate Secret key
pi_inverse

pi inverse function