# stepfun

##### Step Function.

Given the vectors `(x[1],...,x[n])`

and `(y[0],y[1],...,y[n])`

(one value more!), `stepfun(x, y)`

returns an interpolating step function, say `f_n`

. This is the cadlag version (`right = FALSE`

) of the `stepfun`

function from package `stats`

. The step function value `f_n(t)`

equals to the constant `y[k-1]`

for `t`

in `[x[k-1], x[k])`

so that
$$f_n(t) = \sum_{k=1}^{n+1} y_{k-1} {1}_{[x_{k-1}, x_{k})}(t),$$
with\(x_0=-\infty\) and \(x_{n+1}=+\infty\).

##### Usage

`stepfun(x, y)`

##### Arguments

- x
Numeric vector giving the knots or jump locations of the step function. Must be sorted with unique values.

- y
Numeric vector one longer than x, giving the heights of the function values between the c

`x`

values.

##### Details

This function is defined for documentation purposes only. See `stepfun`

and `approxfun`

.

A C++ version of this function is available. See `vignette('IBMPopSim_cpp')`

for more details.

##### Value

Objet of class `stepfun`

with option `right = FALSE`

(cadlag function).

##### See Also

`plot.stepfun`

and `max.stepfun`

.

*Documentation reproduced from package IBMPopSim, version 0.3.0, License: MIT + file LICENSE*