# Simulated categorical data
set.seed(123)
X <- data.frame(
Var1 = as.factor(sample(letters[1:3], 200, replace = TRUE)), # Nominal variable
Var2 = as.factor(sample(letters[4:6], 200, replace = TRUE)), # Nominal variable
Var3 = factor(sample(c("low", "medium", "high"), 200, replace = TRUE),
levels = c("low", "medium", "high"), ordered = TRUE) # Ordinal variable
)
# Run GIBcat with automatic lambda selection and multiple initializations
result <- GIBcat(X = X, ncl = 2, beta = 25, alpha = 0.75, lambda = -1, nstart = 20)
# Print clustering results
print(result$Cluster) # Cluster membership matrix
print(result$Entropy) # Entropy of final clustering
print(result$RelEntropy) # Relative entropy of final clustering
print(result$MutualInfo) # Mutual information between Y and T
Run the code above in your browser using DataLab