# Example dataset with categorical, ordinal, and continuous variables
set.seed(123)
data <- data.frame(
cat_var = factor(sample(letters[1:3], 100, replace = TRUE)), # Nominal categorical variable
ord_var = factor(sample(c("low", "medium", "high"), 100, replace = TRUE),
levels = c("low", "medium", "high"),
ordered = TRUE), # Ordinal variable
cont_var1 = rnorm(100), # Continuous variable 1
cont_var2 = runif(100) # Continuous variable 2
)
# Perform Mixed-Type Fuzzy Clustering with Generalised IB
result <- GIBmix(X = data, ncl = 3, beta = 2, alpha = 0.5, catcols = 1:2,
contcols = 3:4, nstart = 20)
# Print clustering results
print(result$Cluster) # Cluster membership matrix
print(result$Entropy) # Entropy of final clustering
print(result$RelEntropy) # Relative entropy of final clustering
print(result$MutualInfo) # Mutual information between Y and T
Run the code above in your browser using DataLab