# NOT RUN {
# All the examples are available in Hyun and Wong (2015)
#################################
# 4-parameter logistic model
# Example 1, Table 3
#################################
lam <- c(0.05, 0.05, .90)
# Initial estimates are derived from Table 1
# See how the stopping rules are set via 'stop_rul', checkfreq' and 'stoptol'
Theta1 <- c(1.563, 1.790, 8.442, 0.137)
res1 <- multiple(minDose = log(.001), maxDose = log(1000),
inipars = Theta1, k = 4, lambda = lam, delta = -1,
Hill_par = FALSE,
iter = 1,
ICA.control = list(rseed = 1366, ncount = 100,
stop_rule = "equivalence",
checkfreq = 100, stoptol = .95))
# }
# NOT RUN {
res1 <- update(res1, 1000)
# stops at iteration 101
# }
# NOT RUN {
#################################
# 4-parameter Hill model
#################################
## initial estimates for the parameters of Hill model:
a <- 0.008949 # ED50
b <- -1.79 # Hill constant
c <- 0.137 # lower limit
d <- 1.7 # upper limit
# D belongs to c(.001, 1000) ## dose in mg
## the vector of Hill parameters are now c(a, b, c, d)
# }
# NOT RUN {
res2 <- multiple(minDose = .001, maxDose = 1000,
inipars = c(a, b, c, d),
Hill_par = TRUE, k = 4, lambda = lam,
delta = -1, iter = 1000,
ICA.control = list(rseed = 1366, ncount = 100,
stop_rule = "equivalence",
checkfreq = 100, stoptol = .95))
# stops at iteration 100
# }
# NOT RUN {
# use x argument to provide fix number of dose levels.
# In this case, the optimization is only over weights
# }
# NOT RUN {
res3 <- multiple(minDose = log(.001), maxDose = log(1000),
inipars = Theta1, k = 4, lambda = lam, delta = -1,
iter = 300,
Hill_par = FALSE,
x = c(-6.90, -4.66, -3.93, 3.61),
ICA.control = list(rseed = 1366))
res3$evol[[300]]$w
# if the user provide the desugn points via x, there is no guarantee
# that the resulted design is optimal. It only provides the optimal weights given
# the x points of the design.
plot(res3)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab