# NOT RUN {
##########################################
# Verifing the DP-optimality of a design
# The logistic model with two predictors
##########################################
# The design points and corresponding weights are as follows:
# Point1 Point2 Point3 Point4 Point5 Point6 Point7
# 0.07410 -0.31953 -1.00000 1.00000 -1.00000 1.00000 0.30193
# -1.00000 1.00000 -1.00000 1.00000 -0.08251 -1.00000 1.00000
# Weight1 Weight2 Weight3 Weight4 Weight5 Weight6 Weight7
# 0.020 0.275 0.224 0.131 0.092 0.156 0.103
# It should be given to the function as two seperate vectors:
x1 <- c(0.07409639, -0.3195265, -1, 1, -1, 1, 0.3019317, -1, 1, -1, 1, -0.08251169, -1, 1)
w1 <- c(0.01992863, 0.2745394, 0.2236575, 0.1312331, 0.09161503, 0.1561454, 0.1028811)
p <- c(1, -2, 1, -1)
# }
# NOT RUN {
sensbayescomp(formula = ~exp(b0+b1*x1+b2*x2+b3*x1*x2)/(1+exp(b0+b1*x1+b2*x2+b3*x1*x2)),
predvars = c("x1", "x2"),
parvars = c("b0", "b1", "b2", "b3"),
family = binomial(),
x = x1, w = w1,
lx = c(-1, -1), ux = c(1, 1),
prior = uniform(p -1.5, p + 1.5),
prob = ~1-1/(1+exp(b0 + b1 * x1 + b2 * x2 + b3 * x1 * x2)),
alpha = .5, plot_3d = "rgl",
sens.bayes.control = list(cubature = list(tol = 1e-3, maxEval = 1000)))
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab