Identifies invariant coordinates that are non normal using univariate
normality tests as in the comp.norm.test function from the
ICSOutlier package, with the difference that both the
first and last few components are investigated.
normal_crit(object, ...)# S3 method for ICS
normal_crit(
object,
level = 0.05,
test = c("agostino.test", "jarque.test", "anscombe.test", "bonett.test",
"shapiro.test"),
max_select = NULL,
select_only = FALSE,
...
)
# S3 method for default
normal_crit(
object,
level = 0.05,
test = c("agostino.test", "jarque.test", "anscombe.test", "bonett.test",
"shapiro.test"),
max_select = NULL,
select_only = FALSE,
gen_kurtosis = NULL,
...
)
If select_only is TRUE a vector of the names of the invariant
components or variables to select. If FALSE an object of class "ICS_crit"
is returned with the following objects:
crit: the name of the criterion "normal".
level: the level of the test.
max_select: the maximal number of components to select.
test: name of the normality test to be used.
pvalues: the p-values of the tests.
adjusted_levels: the adjusted levels.
select: the names of the invariant components or variables to select.
gen_kurtosis: the vector of generalized kurtosis values in case of
ICS object.
object of class "ICS" or a data frame or matrix.
additional arguments are currently ignored.
the initial level used to make a decision based on the test p-values. See details. Default is 0.05.
name of the normality test to be used. Possibilities are
"jarque.test", "anscombe.test", "bonett.test", "agostino.test",
"shapiro.test".
Default is "agostino.test".
the maximal number of components to select.
boolean. If TRUE only the vector names of the selected
invariant components is returned. If FALSE additional details are returned.
vector of generalized kurtosis values.
Andreas Alfons, Aurore Archimbaud, Klaus Nordhausen and Anne Ruiz-Gazen
The procedure sequentially tests the first and the last components until
finding no additional components as non-normal. The quantile levels are
adjusted for multiple testing by taking the level as level/j for the
jth component.
Alfons, A., Archimbaud, A., Nordhausen, K., & Ruiz-Gazen, A. (2024). Tandem clustering with invariant coordinate selection. Econometrics and Statistics. tools:::Rd_expr_doi("10.1016/j.ecosta.2024.03.002").
Archimbaud, A., Nordhausen, K., and Ruiz-Gazen, A. (2018). ICSOutlier: Unsupervised Outlier Detection for Low-Dimensional Contamination Structure, The RJournal, Vol. 10(1):234–250. tools:::Rd_expr_doi("10.32614/RJ-2018-034")
Archimbaud, A., Nordhausen, K., and Ruiz-Gazen, A. (2016). ICSOutlier: Outlier Detection Using Invariant Coordinate Selection. R package version 0.3-0
med_crit(), var_crit(), discriminatory_crit(),
moments::jarque.test(), moments::anscombe.test(),
moments::bonett.test(), moments::agostino.test(), stats::shapiro.test().
X <- iris[,-5]
out <- ICS(X)
normal_crit(out, level = 0.1, select_only = FALSE)
Run the code above in your browser using DataLab