Learn R Programming

ICV (version 1.0)

h_ICV: The ICV bandwidth.

Description

Calculation of the ICV bandwidth for the Gaussian density estimator corresponding to expression (12) of Savchuk, Hart, and Sheather (2010).

Usage

h_ICV(x)

Arguments

x
numerical vector of data.

Value

The ICV bandwidth.

Details

Computing the ICV bandwidth for a univariate numerical data set of size $n<12,058$. the="" icv="" bandwidth="" is="" consistent="" for="" mise="" optimal="" (see="" wand="" and="" jones="" (1995)).="" gaussian="" kernel="" used="" computing="" ultimate="" density="" estimate.="" following="" values="" of="" paramaters="" selection="" L_ICV are used: $(\alpha,\sigma)=(2.42, 5.06)$. The ICV bandwidth does not exceed the oversmoothed bandwidth of Terrell (1990). See expression (12) of Savchuk et al. (2010).

References

  • Savchuk, O.Y., Hart, J.D., Sheather, S.J. (2010). Indirect cross-validation for density estimation. Journal of the American Statistical Association, 105(489), 415-423.
  • Wand, M.P. and Jones, M.C. (1995). Kernel Smoothing. Chapman and Hall, London.
  • Terrel, G. (1990). The maximum smoothing principle in density estimation. Journal of the American Statistical Association, 85, 470-477.

See Also

ICV, C_ICV, L_ICV, MISE_mixnorm, KDE_ICV, LocICV.

Examples

Run this code
# ICV bandwidth for a random sample of size n=100 from a N(0,1) density.
h_ICV(rnorm(100))

Run the code above in your browser using DataLab