Learn R Programming

ICglm (version 0.1.0)

CAIC: Consistent Akaike's Information Criterion and Consistent Akaike's Information Criterion with Fisher Information

Description

Consistent Akaike's Information Criterion (CAIC) and Consistent Akaike's Information Criterion with Fisher Information (CAICF) for "lm" and "glm" objects.

Usage

CAIC(model)

CAICF(model)

Arguments

model

a "lm" or "glm" object.

Value

CAIC or CAICF measurement of the model.

Details

CAIC (Bozdogan, 1987) is calculated as

$$-2LL(theta) + k(log(n) + 1)$$

CAICF (Bozdogan, 1987) as

$$-2LL(theta) + 2k + k(log(n)) + log(|F|)$$

F is the Fisher information matrix.

References

Bozdogan, H. (1987). Model selection and Akaike's information criterion (AIC): The general theory and its analytical extensions. Psychometrika, 52(3), 345-370.

Examples

Run this code
# NOT RUN {
x1 <- rnorm(100, 3, 2)
x2 <- rnorm(100, 5, 3)
x3 <- rnorm(100, 67, 5)
err <- rnorm(100, 0, 4)

## round so we can use it for Poisson regression
y <- round(3 + 2*x1 - 5*x2 + 8*x3 + err)

m1 <- lm(y~x1 + x2 + x3)
m2 <- glm(y~x1 + x2 + x3, family = "gaussian")
m3 <- glm(y~x1 + x2 + x3, family = "poisson")

CAIC(m1)
CAIC(m2)
CAIC(m3)
CAICF(m1)
CAICF(m2)
CAICF(m3)

# }

Run the code above in your browser using DataLab