Learn R Programming

IDF

Intensity-duration-frequency (IDF) curves are a widely used analysis-tool in hydrology to assess the characteristics of extreme precipitation. The package ‘IDF’ functions to estimate IDF relations for given precipitation time series on the basis of a duration-dependent generalized extreme value (GEV) distribution. The central function is , which uses the method of maximum-likelihood estimation for the d-GEV parameters, whereby it is possible to include generalized linear modeling for each parameter. For more detailed information on the methods and the application of the package for estimating IDF curves with spatial covariates, see Ulrich et. al (2020, https://doi.org/10.3390/w12113119).

Installation

You can install the released version of IDF from CRAN with:

install.packages("IDF")

or from gitlab using:

devtools::install_git("https://gitlab.met.fu-berlin.de/Rpackages/idf_package")

Example

Here are a few examples to illustrate the order in which the functions are intended to be used.

  • Step 0: sample 20 years of example hourly ‘precipitation’ data
set.seed(999)
dates <- seq(as.POSIXct("2000-01-01 00:00:00"),as.POSIXct("2019-12-31 23:00:00"),by = 'hour')
sample.precip <- rgamma(n = length(dates), shape = 0.05, rate = 0.4)
precip.df <- data.frame(date=dates,RR=sample.precip)
  • Step 1: get annual maxima
library(IDF)

durations <- 2^(0:6) # accumulation durations [h] 
ann.max <- IDF.agg(list(precip.df),ds=durations,na.accept = 0.1)
# plotting the annual maxima in log-log representation
plot(ann.max$ds,ann.max$xdat,log='xy',xlab = 'Duration [h]',ylab='Intensity [mm/h]')
  • Step 2: fit d-GEV to annual maxima
fit <- gev.d.fit(xdat = ann.max$xdat,ds = ann.max$ds,sigma0link = make.link('log'))
#> $conv
#> [1] 0
#> 
#> $nllh
#> [1] 59.34496
#> 
#> $mle
#> [1]  6.478887e+00  3.817184e-01 -1.833254e-02  2.843666e-09  7.922310e-01
#> 
#> $se
#> [1] 0.25207846 0.02370771 0.04861600        NaN 0.01008561
# checking the fit 
gev.d.diag(fit,pch=1,ci=TRUE)
# parameter estimates 
params <- gev.d.params(fit)
print(params)
#>        mut sigma0          xi        theta      eta eta2 tau
#> 1 6.478887 1.4648 -0.01833254 2.843666e-09 0.792231    0   0

# plotting the probability density for a single duration 
q.min <- floor(min(ann.max$xdat[ann.max$ds%in%1:2]))
q.max <- ceiling(max(ann.max$xdat[ann.max$ds%in%1:2]))
q <- seq(q.min,q.max,0.2)
plot(range(q),c(0,0.55),type = 'n',xlab = 'Intensity [mm/h]',ylab = 'Density')
for(d in 1:2){ # d=1h and d=2h
  # sampled data:
  hist(ann.max$xdat[ann.max$ds==d],main = paste('d=',d),q.min:q.max
       ,freq = FALSE,add=TRUE,border = d)   
  # etimated prob. density:
  lines(q,dgev.d(q,params$mut,params$sigma0,params$xi,params$theta,params$eta,params$tau,d = d),col=d) 
}
legend('topright',col=1:2,lwd=1,legend = paste('d=',1:2,'h'),title = 'Duration')
  • Step 3: adding the IDF-curves to the data
plot(ann.max$ds,ann.max$xdat,log='xy',xlab = 'Duration [h]',ylab='Intensity [mm/h]')
IDF.plot(durations,params,add=TRUE)

IDF Features

This Example depicts the different features that can be used to model the IDF curves, see Fauer et. al (2021, https://doi.org/10.5194/hess-25-6479-2021). Here we assume, that the block maxima of each duration can be modeled with the GEV distribution ():

where the GEV parameters depend on duration according to:

The function gev.d.fit provides the options:

  • theta_zero = TRUE
  • eta2_zero = TRUE (default)
  • tau_zero = TRUE (default)

resulting in the following features for IDF-curves:

  • simple scaling: using only parameters
  • curvature for small durations: allowing (default)
  • multi-scaling: allowing
  • flattening for long durations: allowing .

Example:

### sampling example data
set.seed(42)
# durations
ds <- 1/60*2^(seq(0,13,1))
# random data for each duration
xdat <- sapply(ds,rgev.d,n = 20,mut = 2,sigma0 =3,xi = 0.2,theta = 0.1,eta = 0.6,tau = 0.1,eta2 = 0.2)
# transform to data.frame
example <- data.frame(xdat=as.numeric(xdat),ds=rep(ds,each=dim(xdat)[1]))

### different fit options
fit.simple <- gev.d.fit(xdat=example$xdat,ds = example$ds,theta_zero = TRUE,show=FALSE)
fit.theta <- gev.d.fit(xdat=example$xdat,ds = example$ds,show=FALSE)
fit.eta2 <- gev.d.fit(xdat=example$xdat,ds = example$ds,eta2_zero = FALSE,show=FALSE)
fit.tau <- gev.d.fit(xdat=example$xdat,ds = example$ds,eta2_zero = FALSE,tau_zero = FALSE,show=FALSE)
# group fits
all.fits <- list(simple=fit.simple,curvature=fit.theta,multiscaling=fit.eta2,flattening=fit.tau)
# compare parameter estimates:
print(t(sapply(all.fits,gev.d.params)))
#>              mut      sigma0   xi           theta      eta       eta2     
#> simple       1.754974 2.897875 -0.004559432 0          0.4978471 0        
#> curvature    1.782777 3.187756 -0.01039414  0.02949747 0.5376237 0        
#> multiscaling 1.896368 2.826447 0.1358611    0.03034914 0.4971133 0.1577612
#> flattening   2.038391 2.712067 0.1469354    0.09235748 0.6237206 0.2642782
#>              tau      
#> simple       0        
#> curvature    0        
#> multiscaling 0        
#> flattening   0.1287691

### compare resulting idf-curves
fit.cols <- c('red','purple','blue','darkgreen')
fit.labels <- c('simple-scaling','theta!=0','eta2!=eta','tau!=0')
# plotting probabilities
idf.probs <- c(0.5,0.75,0.99) 
# create 4 plots: one for each additional parameter
par(mfrow=c(2,2),mar=c(0.2,0.2,0.2,0.2),oma=c(3.5,4.5,0,0),mgp=c(2.5,0.6,0))
for(i.fit in 1:length(all.fits)){
  plot(example$ds,example$xdat,log='xy',type='n',axes=FALSE)
  box()
  boxplot(example$xdat~example$ds,at=ds,add = TRUE,
        boxwex=0.2,cex=0.4,axes=FALSE)
  if(i.fit %in% c(1,3)){
    axis(2,las=2)
    mtext('Intensity [mm/h]',2,3)
  }
  if(i.fit %in% 3:4){
    axis(1,at=c(0.1,1,24,120),labels = c(0.1,1,24,120))
    mtext('Duration [h]',1,2)
  }
  for(i.p in 1:length(idf.probs)){
    # plotting IDF curves for each model (different colors) and probability (different lty)
    IDF.plot(1/60*2^(seq(0,13,0.5)),gev.d.params(all.fits[[i.fit]]),probs = idf.probs[i.p]
             ,add = TRUE,legend = FALSE,lty = i.p,cols = fit.cols[i.fit])
  }
  mtext(fit.labels[i.fit],3,-1.25)
}
legend('topright',lty=rev(1:3),legend = rev(idf.probs),title = 'p-quantile')

Copy Link

Version

Install

install.packages('IDF')

Monthly Downloads

190

Version

2.1.3

License

GPL (>= 2)

Maintainer

Felix S. Fauer

Last Published

July 22nd, 2025

Functions in IDF (2.1.3)

dgev.d

d-GEV probability density function
gev.d.fit

Maximum-likelihood Fitting of the duration-dependent GEV Distribution
gev.d.lik

d-GEV Likelihood
IDF-package

Introduction
IDF.plot

Plotting of IDF curves at a chosen station
gev.d.init

get initial values for gev.d.fit
gev.d.params

Calculate gev(d) parameters from gev.d.fit output
gev.d.diag

Diagnostic Plots for d-gev Models
IDF.agg

Aggregation and annual maxima for chosen durations
rgev.d

Generation of random variables from d-GEV
qgev.d

d-GEV quantile function
pgev.d

d-GEV cumulative distribution function
example

Sampled data for duration-dependent GEV