
Estimates the intrinsic dimension of data using the Morisita estimator of intrinsic dimension.
MINDID(X, scaleQ=1:5, mMin=2, mMax=2)
A matrix
, data.frame
or data.table
where
A vector (at least two values). It contains the values of scaleQ = 1:5
).
The minimum value of mMin = 2
).
The maximum value of mMax = 2
).
A list of two elements:
a data.frame
containing the
a data.frame
containing the values of
J. Golay and M. Kanevski (2015). A new estimator of intrinsic dimension based on the multipoint Morisita index, Pattern Recognition 48 (12):4070<U+2013>4081.
J. Golay, M. Leuenberger and M. Kanevski (2017). Feature selection for regression problems based on the Morisita estimator of intrinsic dimension, Pattern Recognition 70:126<U+2013>138.
J. Golay and M. Kanevski (2017). Unsupervised feature selection based on the Morisita estimator of intrinsic dimension, Knowledge-Based Systems 135:125-134.
J. Golay, M. Leuenberger and M. Kanevski (2015). Morisita-based feature selection for regression problems. Proceedings of the 23rd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), Bruges (Belgium).
# NOT RUN {
sim_dat <- SwissRoll(1000)
scaleQ <- 1:15 # It starts with a grid of 1^E cell (or quadrat).
# It ends with a grid of 15^E cells (or quadrats).
mMI_ID <- MINDID(sim_dat, scaleQ[5:15])
print(paste("The ID estimate is equal to",round(mMI_ID[[1]][1,3],2)))
# }
Run the code above in your browser using DataLab