Learn R Programming

IGP (version 0.2.1)

IGP_DiceKriging: IGP R6 object for fitting DiceKriging model

Description

Class providing object with methods for fitting a GP model

Arguments

Value

Object of R6Class with methods for fitting GP model.

Format

R6Class object.

Methods

Documentation

For full documentation of each method go to https://github.com/CollinErickson/IGP/

new(X=NULL, Z=NULL, package=NULL, estimate.nugget=T, nugget0=F, ...)

This method is used to create object of this class with X and Z as the data. The package tells it which package to fit the GP model.

update(Xall=NULL, Zall=NULL, Xnew=NULL, Znew=NULL, ...)

This method updates the model, adding new data if given, then running optimization again.

Super class

IGP::IGP -> IGP_DiceKriging

Public fields

X

Design matrix

Z

Responses

N

Number of data points

D

Dimension of data

Active bindings

X

Design matrix

Z

Responses

N

Number of data points

D

Dimension of data

Methods

Inherited methods


Method .init()

Usage

IGP_DiceKriging$.init(...)


Method .update()

Usage

IGP_DiceKriging$.update(...)


Method .predict()

Usage

IGP_DiceKriging$.predict(XX, se.fit, ...)


Method .predict.se()

Usage

IGP_DiceKriging$.predict.se(XX, ...)


Method .predict.var()

Usage

IGP_DiceKriging$.predict.var(XX, ...)


Method .delete()

Usage

IGP_DiceKriging$.delete(...)


Method .theta()

Usage

IGP_DiceKriging$.theta()


Method .nugget()

Usage

IGP_DiceKriging$.nugget()


Method .s2()

Usage

IGP_DiceKriging$.s2()


Method .mean()

Usage

IGP_DiceKriging$.mean()


Method clone()

The objects of this class are cloneable with this method.

Usage

IGP_DiceKriging$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

Run this code
n <- 40
d <- 2
n2 <- 20
f1 <- function(x) {sin(2*pi*x[1]) + sin(2*pi*x[2])}
X1 <- matrix(runif(n*d),n,d)
Z1 <- apply(X1,1,f1) + rnorm(n, 0, 1e-3)
X2 <- matrix(runif(n2*d),n2,d)
Z2 <- apply(X2,1,f1)
XX1 <- matrix(runif(10),5,2)
ZZ1 <- apply(XX1, 1, f1)
u <- IGP_DiceKriging$new(X=X1,Z=Z1)
cbind(u$predict(XX1), ZZ1)
u$predict.se(XX1)
u$update(Xnew=X2,Znew=Z2)
u$predict(XX1)
u$delete()

Run the code above in your browser using DataLab