adj_pvalues(object)
"adj_pvalues"(object)
"weights"(object, levels_only = FALSE)
thresholds(object, ...)
"thresholds"(object, levels_only = FALSE)
pvalues(object)
"pvalues"(object)
weighted_pvalues(object)
"weighted_pvalues"(object)
covariates(object)
"covariates"(object)
covariate_type(object)
"covariate_type"(object)
groups_factor(object)
"groups_factor"(object)
nfolds(object)
"nfolds"(object)
nbins(object)
"nbins"(object)
alpha(object)
"alpha"(object)
rejections(object, ...)
"rejections"(object)
rejected_hypotheses(object, ...)
"rejected_hypotheses"(object)
regularization_term(object)
"regularization_term"(object)
m_groups(object)
"m_groups"(object)
as.data.frame_ihwResult(x, row.names = NULL, optional = FALSE, ...)
"as.data.frame"(x, row.names = NULL, optional = FALSE, ...)
"nrow"(x)
"show"(object)
adj_pvalues
: Extract adjusted pvalues weights
: Extract weights thresholds
: Calculate ihw thresholds pvalues
: Extract pvalues weighted_pvalues
: Extract weighted pvalues covariates
: Extract covariates covariate_type
: Extract type of covariate ("ordinal" or "nominal") groups_factor
: Extract factor of stratification (grouping) variable nfolds
: Extract number of folds nbins
: Extract number of bins alpha
: Extract nominal significance (alpha) level rejections
: Total number of rejected hypotheses by ihw procedure rejected_hypotheses
: Get a boolean vector of the rejected hypotheses regularization_term
: Extract vector of regularization parameters used for each stratum m_groups
: Extract total number of hypotheses within each stratum as.data.frame
: Coerce ihwResult to data frame nrow
: Return number of p-values show
: Convenience method to show ihwResult object
df
weights
alpha
nbins
nfolds
regularization_term
m_groups
penalty
covariate_type
adjustment_type
reg_path_information
solver_information
save.seed <- .Random.seed; set.seed(1)
X <- runif(n = 20000, min = 0.5, max = 4.5) # Covariate
H <- rbinom(n = length(X), size = 1, prob = 0.1) # Is the null hypothesis (mean=0) true or false ?
Z <- rnorm(n = length(X), mean = H * X) # Z-score
.Random.seed <- save.seed
pvalue <- 1 - pnorm(Z) # pvalue
ihw_res <- ihw(pvalue, covariates = X, alpha = 0.1)
rejections(ihw_res)
colnames(as.data.frame(ihw_res))
Run the code above in your browser using DataLab