# NOT RUN {
# Population Values
# IM: mux_i N(0, var=9)
sigma_mu=sqrt(9);
# IIV: sigmasqx_i Gamma(shape=0.25, scale=17)
shape=0.25;
scale=17;
# measurement error
sigma_e=sqrt(1.8) # such that the measurement scale reliability is .88
# y_i = beta_mu*IM_i + beta_IIV*ISD_i + epsilon_i
# epsilon_i N(0,1)
beta_mu=1;
sigma_ep=1
# beta_IIV is beta2 for ISD
beta_IIV=c(0,0.3,0.8,1.50)[2]
N=c(200,500)[1]
T=c(6,9,12)[2]
# Data Generation
set.seed(12)
mu=rnorm(N,0,sigma_mu)
IIV=rgamma(N,shape=shape,scale=scale) #sigmasq_vi
isd=sqrt(IIV)
# population regression model
# y=0+beta_mu*mu+beta_IIV*IIV+rnorm(N,0,sigma_ep)
# use ISD as predictor
y=0+beta_mu*mu+beta_IIV*isd+rnorm(N,0,sigma_ep)
x=v=compx=array(0,c(N,T))
for (i in 1:N) {
v[i,]=mu[i]+rnorm(T,0,isd[i])
x[i,]=v[i,]+rnorm(T,0,sigma_e)
compx[i,]=x[i,]
}
IVAR.TPB(
compx,
y,
nB=10
)
# }
Run the code above in your browser using DataLab