# NOT RUN {
# See the vignette associated with the package for more graphical examples:
# vignette("IMIFA", package = "IMIFA")
# data(olive)
# area <- olive$area
# simIMIFA <- mcmc_IMIFA(olive, method="IMIFA")
# resIMIFA <- get_IMIFA_results(simIMIFA, z.avgsim=TRUE)
# Examine the posterior distribution(s) of the number(s) of clusters (G) &/or latent factors (Q)
# For the IM(I)FA and OM(I)FA methods, this also plots the trace of the active/non-empty clusters
# plot(resIMIFA, plot.meth="GQ")
# plot(resIMIFA, plot.meth="GQ", g=2)
# Plot clustering uncertainty (and, if available, the similarity matrix)
# plot(resIMIFA, plot.meth="zlabels", zlabels=area)
# Visualise empirical vs. estimated covariance error metrics
# plot(resIMIFA, plot.meth="errors")
# Look at the trace, density, posterior mean and correlation of various parameters of interest
# plot(resIMIFA, plot.meth="all", param="means", g=1)
# plot(resIMIFA, plot.meth="all", param="means", g=1, ind=2)
# plot(resIMIFA, plot.meth="all", param="scores")
# plot(resIMIFA, plot.meth="all", param="scores", by.fac=TRUE)
# plot(resIMIFA, plot.meth="all", param="loadings", g=1)
# plot(resIMIFA, plot.meth="all", param="loadings", g=1, heat.map=FALSE)
# plot(resIMIFA, plot.meth="parallel.coords", param="uniquenesses")
# plot(resIMIFA, plot.meth="all", param="pis", intervals=FALSE, partial=TRUE)
# plot(resIMIFA, plot.meth="all", param="alpha")
# }
Run the code above in your browser using DataLab