Learn R Programming

INLAjoint

Joint modeling multivariate longitudinal and time-to-event outcomes with INLA

INLAjoint is a package that fits joint models for multivariate longitudinal markers (with various distributions available) and survival outcomes (possibly accounting for competing risks and multi-state) with Integrated Nested Laplace Approximations (INLA). The flexible and user friendly function joint() facilitates the use of the fast and reliable inference technique implemented in INLA package for joint modeling. More details are given in the help page of the joint function (accessible via ?joint in the R console), the vignette associated to the joint() function (accessible via vignette("INLAjoint") in the R console).

Install

install.packages("R.rsp") # (only for the vignette)

devtools::install_github('DenisRustand/INLAjoint', build_vignettes = TRUE)

Note that INLA is required, you can install it with: install.packages("INLA",repos=c(getOption("repos"),INLA="https://inla.r-inla-download.org/R/testing"), dep=TRUE)

More details at https://www.r-inla.org/download-install

Contact: INLAjoint@gmail.com

References:

  • Rustand, D., van Niekerk, J., Krainski, E. T., & Rue, H. (2024). Joint Modeling of Multivariate Longitudinal and Survival Outcomes with the R package INLAjoint. arXiv preprint arXiv:2402.08335.

https://arxiv.org/abs/2402.08335

  • Rustand, D., van Niekerk, J., Krainski, E. T., Rue, H., & Proust-Lima, C. (2024). Fast and flexible inference for joint models of multivariate longitudinal and survival data using integrated nested Laplace approximations. Biostatistics, kxad019.

https://doi.org/10.1093/biostatistics/kxad019

  • Alvares, D., Van Niekerk, J., Krainski, E.T., Rue, H. and Rustand, D., 2024. Bayesian survival analysis with INLA. Statistics in medicine, 43(20), pp.3975-4010.

https://doi.org/10.1002/sim.10160

Copy Link

Version

Install

install.packages('INLAjoint')

Monthly Downloads

285

Version

25.11.10

License

GPL-3

Issues

Pull Requests

Stars

Forks

Maintainer

Denis Rustand

Last Published

November 10th, 2025

Functions in INLAjoint (25.11.10)

joint

Fit a multivariate joint model for longitudinal and/or survival data
nobs.INLAjoint

Extracts number of observations of each composant from a given model fitted with INLAjoint
print.plot.INLAjoint

Prints plot the output from a multivariate joint model for longitudinal and/or survival data
setup_Y_model

Setup outcome for longitudinal marker
setup_S_model

Setup survival part for outcome m
ranef.INLAjoint

Extracts random effects values from a given model fitted with INLAjoint
plot.INLAjoint

Plot the output from a multivariate joint model for longitudinal and/or survival data
predict.INLAjoint

Computes predictions for a given model fitted with INLAjoint
setup_RE_model

Setup random effects part for longitudinal marker k
setup_FE_model

Setup fixed effects part for longitudinal marker k
INLAjoint.scopy.define

Setup scopy
INLAjoint.rw2

Setup rw2
INLAjoint.rw

Setup rw
INLAjoint

INLAjoint
INLAjoint.ginv

Setup ginv
LongMS

Simulated univariate longitudinal dataset
fitted.INLAjoint

Extracts fitted values from a given model fitted with INLAjoint
fixef.INLAjoint

Extracts fixed effects values from a given model fitted with INLAjoint
logLik.INLAjoint

Extracts log-likelihood value from a given model fitted with INLAjoint
joint.rerun

Rerun a model fitted with INLAjoint
family.INLAjoint

Extracts family from a given model fitted with INLAjoint
coef.INLAjoint

Extracts model coefficients from a given model fitted with INLAjoint
joint.run

Run a model fitted with INLAjoint
formula.INLAjoint

Extracts formula from a given model fitted with INLAjoint
SurvMS

Simulated multi-state survival dataset
Longsim

Simulated multivariate longitudinal dataset
Survsim

Simulated competing risks survival dataset
INLAjoint.object

Fitted joint object