Learn R Programming

INLAspacetime

This is a R package to implement certain spatial and spatio-temporal models, including some of the spatio-temporal models proposed here. It uses the cgeneric interface in the INLA package, to implement models by writing C code to build the precision matrix compiling it so that INLA can use it internally.

Installation

The ‘INLA’ package is a suggested one, but you will need it for actually fitting a model. You can install it with

install.packages("INLA",repos=c(getOption("repos"),INLA="https://inla.r-inla-download.org/R/testing"), dep=TRUE) 

You can install the current CRAN version of INLAspacetime:

install.packages("INLAspacetime")

You can install the latest version of INLAspacetime from GitHub with

## install.packages("remotes")
remotes::install_github("eliaskrainski/INLAspacetime",  build_vignettes=TRUE)

We have implemented

  1. some of the models presented in https://www.idescat.cat/sort/sort481/48.1.1.Lindgren-etal.pdf

  2. the barrier model proposed in https://doi.org/10.1016/j.spasta.2019.01.002

A spacetime example

Simulate some fake data.

set.seed(1)
n <- 5
dataf <- data.frame(
    s1   = runif(n, -1, 1),
    s2   = runif(n, -1, 1),
    time = runif(n, 1, 4),
    y    = rnorm(n, 0, 1))
str(dataf)
#> 'data.frame':    5 obs. of  4 variables:
#>  $ s1  : num  -0.469 -0.256 0.146 0.816 -0.597
#>  $ s2  : num  0.797 0.889 0.322 0.258 -0.876
#>  $ time: num  1.62 1.53 3.06 2.15 3.31
#>  $ y   : num  -0.00577 2.40465 0.76359 -0.79901 -1.14766

Loading packages:

library(fmesher)
library(INLA)
library(INLAspacetime)

Define spatial and temporal discretization meshes

smesh <- fm_mesh_2d(
  loc = cbind(0,0), 
  max.edge = 5, 
  offset = 2)
tmesh <- fm_mesh_1d(
  loc = 0:5)

Define the spacetime model object to be used

stmodel <- stModel.define(
    smesh = smesh, ## spatial mesh
    tmesh = tmesh, ## temporal mesh
    model = '121', ## model, see the paper
    control.priors = list(
        prs = c(1, 0.1), ## P(spatial range < 1) = 0.1
        prt = c(5, 0), ## temporal range fixed to 5
        psigma = c(1, 0.1) ## P(sigma > 1) = 0.1
        )
    )

Fit the model

Define a projector matrix from the spatial and temporal meshes to the data

Aproj <- inla.spde.make.A(
    mesh = smesh,
    loc = cbind(dataf$s1, dataf$s2),
    group = dataf$time,
    group.mesh = tmesh
)

Create a ‘fake’ column to be used as index. in the f() term

dataf$st <- NA

Setting the likelihood precision (as fixed)

ctrl.lik <- list(
  hyper = list(
    prec = list(
      initial = 10, 
      fixed = TRUE)    
  )
)

Combine a ‘fake’ index column with `A.local’

fmodel <- y ~ f(st, model = stmodel, A.local = Aproj)

Call the main INLA function:

fit <- inla(
    formula = fmodel,
    data = dataf,
    control.family = ctrl.lik)

Posterior marginal summaries for fixed effect and the model parameters that were not fixed.

fit$summary.fixed
#>                  mean       sd 0.025quant  0.5quant 0.975quant     mode
#> (Intercept) 0.6933766 4.032586  -6.962245 0.5227216   9.417188 0.555068
#>                      kld
#> (Intercept) 7.411114e-05
fit$summary.hyperpar
#>                   mean        sd 0.025quant 0.5quant 0.975quant      mode
#> Theta1 for st 1.199194 0.4918107   0.365412 1.161518   2.277266 0.9750084
#> Theta2 for st 1.435519 0.1710698   1.103120 1.434030   1.776684 1.4277357

Using the inlabru

library(inlabru)

Setting the observation (likelihood) model object

data_model <- bru_obs(
  formula = y ~ ., 
  family = "gaussian",
  control.family = ctrl.lik, 
  data = dataf)

Define the data model: the linear predictor terms

linpred <- ~ 1 +
    field(list(space = cbind(s1, s2), 
               time = time),
          model = stmodel)

Fitting

result <- bru(
  components = linpred,
  data_model)

Summary of the model parameters

result$summary.fixed
#>                mean       sd 0.025quant  0.5quant 0.975quant      mode
#> Intercept 0.6690379 3.969851  -6.886589 0.5095207   9.213142 0.5379552
#>                    kld
#> Intercept 5.713904e-05
result$summary.hyperpar
#>                      mean        sd 0.025quant 0.5quant 0.975quant      mode
#> Theta1 for field 1.190355 0.4867797  0.3624472 1.153749   2.255702 0.9726699
#> Theta2 for field 1.435283 0.1709777  1.1034676 1.433660   1.776667 1.4267841

Vignettes

Please check it out at the Tutorials

Copy Link

Version

Install

install.packages('INLAspacetime')

Monthly Downloads

2,417

Version

0.1.11

License

GPL (>= 2)

Issues

Pull Requests

Stars

Forks

Maintainer

Elias Teixeira Krainski

Last Published

February 25th, 2025

Functions in INLAspacetime (0.1.11)

mesh2d

Illustrative code for building a mesh in 2d domain.
outDetect

Detect outliers in a time series considering the raw data and a smoothed version of it.
mesh2fem

Illustrative code for Finite Element matrices of a mesh in 2d domain.
Heron

Internal util functions for polygon properties.
mesh2projector

Illustrative code to build the projector matrix for SPDE models.
worldMap

Helper functions to retrieve the world map, a world polygon, and create grid centers.
stModel.define

Define a spacetime model object for the f() call.
stModel.matrices

Define the spacetime model matrices.
ghcndSelect

Select data from the daily dataset
stdSubs

To check unusual low/high variance segments
upperPadding

Prepare a matrix or a list of matrices for use in some 'cgeneric' code.
world_grid

Define a regular grid in 'Mollweide' projection, with units in kilometers.
stModel.precision

Spacetime precision matrix.
stats.inla

To retrieve goodness of fit statistics for a specific model class.
INLAspacetime

Spatial and Spatio-Temporal Models using INLA
barrierModel.define

Define a spacetime model object for the f() call.
Earth_poly

Function to define the boundary Earch polygon in longlat projection for a given resolution.
downloadUtilFiles

Download files from the NOAA's GHCN daily data
ar2cov

Illustrative code to compute the covariance of the second order autoregression (AR2) model.
cgeneric_sspde

Define the stationary SPDE cgeneric model for INLA.
Jmatrices

The 2nd order temporal matrices with boundary correction
cWhittleMatern

Computes the Whittle-Matern correlation function.
stlines

To visualize time series over space.
bru_get_mapper.stModel_cgeneric

Mapper object for automatic inlabru interface
ar2precision

Precision matrix for an AR2 model.
mesh.dual

Extracts the dual of a mesh object.
paramsUtils

Functions to help converting from/to user/internal parametrization. The internal parameters are 'gamma_s, 'gamma_t', 'gamma_E' The user parameters are 'r_s', 'r_t', 'sigma'
spde2precision

Illustrative code to build the precision matrix for SPDE kind models.