model.For a given model object query the initial,
mu, log prior, graph or precision prec
can be evaluated/retrieved.
initial(model)mu(model, theta)
prior(model, theta)
graph(model, optimize)
prec(model, theta, optimize)
# S3 method for default
prec(model, ...)
# S4 method for Matrix
vcov(object, ...)
the result of the desired query of the 'cgeneric' model. 'graph' and 'prec' can be either a vector (if optimize = TRUE) or a sparse matrix.
object to represent a model
numeric vector.
For prior it can be a numeric matrix,
with number of lines equal the size of theta
and each column as a different case.
logical indicating if it is to be returned only the elements and not as a sparse matrix.
additional arguments passed on
Matrix supposed to be a sparse precision matrix
initial(): Retrieve the initial model parameter(s)
mu(): Evaluate the model's mean
prior(): Evaluate the log-prior for a given theta
graph(): Retrieve the models' graph
prec(): Retrieve the precision for a given theta
prec(default): The default precision method
computes the inverse of the variance
vcov(Matrix): The vcov method for sparse matrices
prior.cgeneric()