modelingParams
This method model the synthesis, degradation and processign rates after their estimation by the constructor function
newINSPEcT
. Estimated rates are not guaranteed to optimally describes provided input data yet.
To this purpose, modeled rates can be generated and genes can be assigned to a transcriptional regulatory mechanism.
Modeled rates can be accessed via the method viewModelRates
and gene classification according
to the regulatory mechanism can be accessed by geneClass
. The modeling procedure can be set by the
user by modyging the parameters via modelingParams
modelRates(object, seed = NULL, BPPARAM = bpparam(), verbose = NULL)
"modelRates"(object, seed = NULL, BPPARAM = bpparam(), verbose = NULL)
modelingParams
) (Default: NULL)
used for parallelization (if nCores=1 doesn't parallelize). If NULL takes the information
from the object (see modelingParams
) (Default: NULL)viewModelRates
, geneClass
, modelingParams
data('rpkms', package='INSPEcT')
tpts <- c(0, 1/6, 1/3, 1/2, 1, 2, 4, 8, 16)
tL <- 1/6
mycerIds <- newINSPEcT(tpts, tL, rpkms$foursu_exons, rpkms$total_exons,
rpkms$foursu_introns, rpkms$total_introns, BPPARAM=SerialParam())
mycerIdsOneGene <- mycerIds[5]
## View modeling parameters
modelingParams(mycerIdsOneGene)
## Run the modeling in a reproducible way (setting seed)
mycerIdsOneGene <- modelRates(mycerIdsOneGene, seed=1, BPPARAM=SerialParam())
## view modeled synthesis rates
viewModelRates(mycerIdsOneGene, 'synthesis')
## view gene classes
geneClass(mycerIdsOneGene)
## Divide a parallel computation into chunks
## Not run:
# nCores(mycerIds) <- parallel::detectCores()
# chunkSize <- 100
# splitIdx <- ceiling(c(1:nGenes(mycerIds))/chunkSize)
# chunks <- lapply(split(mycerIds, splitIdx), modelRates)
# mycerIdsModeled <- do.call('combine', chunks)
# ## End(Not run)
Run the code above in your browser using DataLab