# Note: more examples can be found at
# https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-017-1650-8
## -------------------------------------------------------
## Example from \code{\link[party]{varimp}} in \pkg{party}
## Classification RF
## -------------------------------------------------------
# \donttest{
library(party)
# from help in varimp by party package
set.seed(290875)
readingSkills.cf <- cforest(score ~ ., data = readingSkills,
control = cforest_unbiased(mtry = 2, ntree = 50))
# standard importance
varimp(readingSkills.cf)
# the same modulo random variation
varimp(readingSkills.cf, pre1.0_0 = TRUE)
# conditional importance, may take a while...
varimp(readingSkills.cf, conditional = TRUE)
# }
# IMP based on CIT-RF (party package)
library(party)
ntree <- 50
# readingSkills: data from party package
da <- readingSkills[, 1:3]
set.seed(290875)
readingSkills.cf3 <- cforest(score ~ ., data = readingSkills,
control = cforest_unbiased(mtry = 3, ntree = 50))
# IPM case-wise computed with OOB with party
pupf <- ipmparty(readingSkills.cf3, da, ntree)
# global IPM
pua <- apply(pupf, 2, mean)
pua
Run the code above in your browser using DataLab