#Note: more examples can be found at
#https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-017-1650-8
# \donttest{
library(mlbench)
# data used by Breiman, L.: Random forests. Machine Learning 45(1), 5--32 (2001)
data(PimaIndiansDiabetes2)
Diabetes <- na.omit(PimaIndiansDiabetes2)
set.seed(2016)
require(randomForest)
ri <- randomForest(diabetes ~ ., data = Diabetes, ntree = 500, importance = TRUE,
keep.inbag = TRUE, replace = FALSE)
# new cases
da1 = rbind(apply(Diabetes[Diabetes[, 9] == 'pos', 1:8], 2, mean),
apply(Diabetes[Diabetes[, 9] == 'neg', 1:8], 2, mean))
# IPM case-wise computed for new cases for randomForest package
ntree = 500
pupfn = ipmrfnew(ri, as.data.frame(da1), ntree)
pupfn
# }
Run the code above in your browser using DataLab