Simulate incomplete data with a band structure, which can be used in GraphIRO(data,...)
for estimating the structure of the Gaussian graphical network.
SimGraDat(n = 200, p = 100, type = "band", rate = 0.1)
Number of observations, default of 200.
Number of covariates, default of 100.
type=="band"
which denotes the band structure, with precision matrix
$$
C_{i,j}=\left\{\begin{array}{ll}
0.5,&\textrm{if $\left| j-i \right|=1, i=2,...,(p-1),$}\\
0.25,&\textrm{if $\left| j-i \right|=2, i=3,...,(p-2),$}\\
1,&\textrm{if $i=j, i=1,...,p,$}\\
0,&\textrm{otherwise.}
\end{array}\right. $$
Missing rate, the default value is 0.1.
nxp Gaussian distributed data with missing.
pxp adjacency matrix used for generating data.
Liang, F., Song, Q. and Qiu, P. (2015). An Equivalent Measure of Partial Correlation Coefficients for High Dimensional Gaussian Graphical Models. J. Amer. Statist. Assoc., 110, 1248-1265.
Liang, F. and Zhang, J. (2008) Estimating FDR under general dependence using stochastic approximation. Biometrika, 95(4), 961-977.
Liang, F., Jia, B., Xue, J., Li, Q., and Luo, Y. (2018). An Imputation Regularized Optimization Algorithm for High-Dimensional Missing Data Problems and Beyond. Submitted to Journal of the Royal Statistical Society Series B.
# NOT RUN {
library(IROmiss)
SimGraDat(n = 200, p = 100, type = "band", rate = 0.1)
# }
Run the code above in your browser using DataLab