#Obtain the correct probabilities of five 3PL model items when theta=1.2 and D=1.702.
library(IRTBEMM)
th=1.2 #Examinee's ability parameter theta
A=c(1.5, 2, 0.5, 1.2, 0.4) #item discrimination parameters
B=c(-0.5, 0, 1.5, 0.3, 2.8) #item difficulty parameters
C=c(0.1, 0.2, 0.3, 0.15, 0.25) #item pseudo guessing parameters
Par3PL=list(A=A, B=B, C=C) #Create a list for 3PL
P.3pl=Prob.model(X=th, Model='3PL', Par.est0=Par3PL) #Obtain the 3PL probabilities
#Obtain the correct probabilities of five 4PL model items when theta=1.2 and D=1.
S=c(0.3, 0.1, 0.13, 0.09, 0.05) #item pseudo slipping parameters
Par4PL=list(A=A, B=B, C=C, S=S) #Create a list for 4PL
P.4pl=Prob.model(X=th, Model='4PL', Par.est0=Par4PL, D=1) #Obtain the 4PL probabilities
#Obtain the correct probabilities of three 1PLG model items when theta=0.3.
th=0.3
Beta=c(0.8, -1.9, 2.4)
Gamma=c(-1.31, -0.89, -0.18)
Par1PLG=list(Beta=Beta, Gamma=Gamma) #Create a list for 1PLG
P.1plg=Prob.model(X=th, Model='1PLG', Par.est0=Par1PLG) #Obtain the 1PLG probabilities
#Obtain the correct probabilities of three 1PLAG model items when theta=0.3.
Alpha=0.2
Par1PLAG=list(Alpha=Alpha, Beta=Beta, Gamma=Gamma) #Create a list for 1PLAG
P.1plag=Prob.model(X=th, Model='1PLAG', Par.est0=Par1PLAG) #Obtain the 1PLAG probabilities
Run the code above in your browser using DataLab