Learn R Programming

IceCast (version 2.1.0)

gen_cont: Generate contours

Description

Generate the contours for a particular region given the model prediction

Usage

gen_cont(r, pars_r, reg_info, n_gen = NULL, map_pred_r = NULL,
  stat_only = FALSE, mean_only = FALSE, eff_zero = 12.5,
  stat_only_trend = TRUE)

Arguments

r

integer indicating the number of the region in which the contours should be generated

pars_r

List of parameter information for region r. The list should contain two elements, muEst and sigmaEst, which give estimates for the \(\mu\) and \(\Sigma\) parameters used in generating contours. Typically obtained from the calc_pars function

reg_info

a reg_info list (see documentation for reg_info)

n_gen

integer specifying the number of contours to be generated, must be at least 2

map_pred_r

output of get_map function applied to SpatialPolygons object corresponding to an intial forecast (typically a bias-corrected dynamic ensemble forecast)

stat_only

boolean indicating that forecast is purely statistical (no dynamic ensemble model forecast considered)

mean_only

boolean indicating that only the mean contour will be computed rather than distribution

eff_zero

how close a generated vector needs to be to zero to be counted as a zero, defaults to 12.5

stat_only_trend

boolean indicating if a trend adjustment should be applied when stat_only = TRUE. Defaults to true

Examples

Run this code
# NOT RUN {
#statistical binary, region 1
stat_bin_1 <- gen_cont(r = 1, pars_r = pars_1, reg_info,
                       stat_only = TRUE, mean_only = TRUE)

#statistical probabilistic, region 1, 2 generated contours
stat_prob_1 <- gen_cont(r = 1, pars_r = pars_1, reg_info,
                        n_gen = 2, stat_only = TRUE)

 #hybrid probabilistic, region 1, 2 generated contours
 hybrid_prob_1 <- gen_cont(r = 1, pars_r = pars_1, reg_info,
                           n_gen = 2, map_pred_r = map_curr_1)
 
# }

Run the code above in your browser using DataLab