Learn R Programming

InPAS (version 1.4.4)

inPAS: do estimation of alternative polyadenylation and cleavage site in one step

Description

do estimation of alternative polyadenylation and cleavage site in one step

Usage

inPAS(bedgraphs, genome, utr3, txdb=NA, tags, hugeData=FALSE, ..., gp1, gp2, window_size=100, search_point_START=50, search_point_END=NA, cutStart=window_size, cutEnd=0, coverage_threshold=5, long_coverage_threshold=2, background=c("same_as_long_coverage_threshold", "1K", "5K", "10K", "50K"), gcCompensation=NA, mappabilityCompensation=NA, FFT=FALSE, fft.sm.power=20, adjust_distal_polyA_end=TRUE, PolyA_PWM=NA, classifier=NA, classifier_cutoff=.8, shift_range=window_size, method=c("limma", "fisher.exact", "singleSample", "singleGroup"), normalize=c("none", "quantiles", "quantiles.robust", "mean", "median"), design, contrast.matrix, coef=1, P.Value_cutoff=0.05, adj.P.Val_cutoff=0.05, dPDUI_cutoff=0.3, PDUI_logFC_cutoff=0.59, BPPARAM=NULL)

Arguments

bedgraphs
The file names of bedgraphs generated by bedtools. eg: bedtools genomecov -bg -split -ibam $bam -g mm10.size.txt > $bedgraph
genome
an object of BSgenome
utr3
output of utr3Annotation
txdb
an object of TxDb
tags
the names for each input bedgraphs
hugeData
is this dataset consume too much memory? if it is TRUE, the coverage will be saved into tempfiles.
...
parameters can be passed into tempfile. This is useful when you submit huge dataset to cluster.
gp1
tag names involved in group 1
gp2
tag names involved in group 2
window_size
window size for noval distal position searching and adjusted polyA searching, default: 100
search_point_START
start point for searching
search_point_END
end point for searching
cutStart
how many nucleotides should be removed from the start before search, 0.1 means 10 percent.
cutEnd
how many nucleotides should be removed from the end before search, 0.1 means 10 percent.
coverage_threshold
cutoff threshold for coverage in the region of short form
long_coverage_threshold
cutoff threshold for coverage in thre region of long form
background
the range for calculating cutoff threshold of local background
gcCompensation
GC content compensation vector
mappabilityCompensation
mappability compensation vector
FFT
use Fast Fourier Transform Algorithm to smooth the data or not. default: FALSE
fft.sm.power
if FFT is TRUE, the frequency should be removed
adjust_distal_polyA_end
If true, adjust distal polyA end by cleanUpdTSeq
PolyA_PWM
Position Weight Matrix of polyA
classifier
An object of class "PASclassifier"
classifier_cutoff
This is the cutoff used to assign whether a putative pA is true or false. This can be any floating point number between 0 and 1. For example, classifier_cutoff = 0.5 will assign an putative pA site with prob.1 > 0.5 to the True class (1), and any putative pA site with prob.1
shift_range
the shift range for polyA site searching
normalize
normalization method
design
the design matrix of the experiment, with rows corresponding to arrays and columns to coefficients to be estimated. Defaults to the unit vector meaning that the arrays are treated as replicates. see model.matrix
contrast.matrix
numeric matrix with rows corresponding to coefficients in fit and columns containing contrasts. May be a vector if there is only one contrast. see makeContrasts
coef
column number or column name specifying which coefficient or contrast of the linear model is of interest. see more topTable. default value: 1
P.Value_cutoff
cutoff of P value
adj.P.Val_cutoff
cutoff value for adjusted p.value
dPDUI_cutoff
cutoff value for differenctial PAS(polyadenylation signal) usage index
PDUI_logFC_cutoff
cutoff value for log2 fold change of PAS(polyadenylation signal) usage index
BPPARAM
An optional BiocParallelParam instance determining the parallel back-end to be used during evaluation, or a list of BiocParallelParam instances, to be applied in sequence for nested calls to bplapply.

Value

return an object of GRanges

Examples

Run this code
    if(interactive()){
        library(BSgenome.Mmusculus.UCSC.mm10)
        library(TxDb.Mmusculus.UCSC.mm10.knownGene)

        path <- file.path(find.package("InPAS"), "extdata")
        bedgraphs <- file.path(path, "Baf3.extract.bedgraph")
        data(utr3.mm10)
        res <- inPAS(bedgraphs=bedgraphs, tags=c("Baf3"), 
                  genome=BSgenome.Mmusculus.UCSC.mm10, 
                  utr3=utr3.mm10, gp1="Baf3", gp2=NULL,
                  txdb=TxDb.Mmusculus.UCSC.mm10.knownGene,
                  search_point_START=200,
                  short_coverage_threshold=15,
                  long_coverage_threshold=3, 
                  cutStart=0, cutEnd=.2, 
                  hugeData=FALSE)
        res
    }

Run the code above in your browser using DataLab