# load sample data together with sub-population list
data(RandomVA2)
if (FALSE) {
# extract InterVA style input data
data <- RandomVA2
# extract sub-population information.
subpop <- RandomVA2$sex
# run without sub-population
fit1a<- insilico( data, subpop = NULL,
Nsim = 400, burnin = 200, thin = 10 , seed = 1,
auto.length = FALSE)
fit1b<- insilico( data, subpop = NULL,
Nsim = 400, burnin = 200, thin = 10 , seed = 2,
auto.length = FALSE)
fit1c<- insilico( data, subpop = NULL,
Nsim = 400, burnin = 200, thin = 10 , seed = 3,
auto.length = FALSE)
# single chain check
csmf.diag(fit1a)
# multiple chains check
csmf.diag(list(fit1a, fit1b, fit1c), test = "gelman")
# with sub-populations
fit2a<- insilico( data, subpop = subpop,
Nsim = 400, burnin = 200, thin = 10 , seed = 1,
auto.length = FALSE)
fit2b<- insilico( data, subpop = subpop,
Nsim = 400, burnin = 200, thin = 10 , seed = 2,
auto.length = FALSE)
fit2c<- insilico( data, subpop = subpop,
Nsim = 400, burnin = 200, thin = 10 , seed = 3,
auto.length = FALSE)
# single chain check
csmf.diag(fit2a)
# multiple chains check
csmf.diag(list(fit2a, fit2b, fit2c), test = "gelman", which.sub = "Men")
}
Run the code above in your browser using DataLab