# NOT RUN {
# }
# NOT RUN {
#--- Univariate time series Q and C
ws <- sample(2:40, size = 1)
dist_method <- "norm1"
N <- 50
N <- 50
Q <- cumsum(rnorm(N))
C <- cumsum(rnorm(N))
Q.z <- IncDTW::scale(Q, "z")
C.z <- IncDTW::scale(C, "z")
lb.z <- lowerbound(C = C.z, ws = ws, scale ="none", dist_method = dist_method, Q = Q.z)
lb <- lowerbound(C = C, ws = ws, scale ="z", dist_method = dist_method, Q = Q)
d1 <- dtw2vec(Q = Q.z, C = C.z, step_pattern = "symmetric1",
dist_method = dist_method, ws = ws)$distance
d2 <- dtw2vec(Q = Q.z, C = C.z, step_pattern = "symmetric2",
dist_method = dist_method, ws = ws)$distance
c(lb, lb.z, d1, d2)
#--- with pre-calculated tube
ws <- sample(2:40, size = 1)
dist_method <- "norm1"
N <- 50
N <- 50
Q <- cumsum(rnorm(N))
C <- cumsum(rnorm(N))
Q.z <- IncDTW::scale(Q, "z")
C.z <- IncDTW::scale(C, "z")
tube <- lowerbound_tube(Q, ws, scale = "z")
lb.z <- lowerbound(C = C.z, ws = ws, scale ="none", dist_method = dist_method, tube = tube)
lb <- lowerbound(C = C, ws = ws, scale ="z", dist_method = dist_method, tube = tube)
d1 <- dtw2vec(Q = Q.z, C = C.z, step_pattern = "symmetric1",
dist_method = dist_method, ws = ws)$distance
d2 <- dtw2vec(Q = Q.z, C = C.z, step_pattern = "symmetric2",
dist_method = dist_method, ws = ws)$distance
c(lb, lb.z, d1, d2)
#--- Multivariate time series Q and C
ws <- sample(2:40, size = 1)
dist_method <- sample(c("norm1", "norm2", "norm2_square"), size = 1)
N <- 50
Q <- matrix(cumsum(rnorm(N * 3)), ncol = 3)
C <- matrix(cumsum(rnorm(N * 3)), ncol = 3)
Q.z <- IncDTW::scale(Q, "z")
C.z <- IncDTW::scale(C, "z")
lb.z <- lowerbound(C = C.z, ws = ws, scale ="none", dist_method = dist_method, Q = Q.z)
lb <- lowerbound(C = C, ws = ws, scale ="z", dist_method = dist_method, Q = Q)
d1 <- dtw2vec(Q = Q.z, C = C.z, step_pattern = "symmetric1",
dist_method = dist_method, ws = ws)$distance
d2 <- dtw2vec(Q = Q.z, C = C.z, step_pattern = "symmetric2",
dist_method = dist_method, ws = ws)$distance
c(lb, lb.z, d1, d2)
# }
Run the code above in your browser using DataLab